Atjaunināt sīkdatņu piekrišanu

E-grāmata: Arthur's Invariant Trace Formula and Comparison of Inner Forms

  • Formāts: PDF+DRM
  • Izdošanas datums: 14-Sep-2016
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783319315935
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 142,75 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 14-Sep-2016
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783319315935
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations.  It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur’s work and a proof of the correspondence between GL(n) and its inner forms in general.  Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur’s proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula.  The final chapter illustrates the use of the formula by comparing it for G’ = GL(n) and its inner form GArthur’s Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae.  Additionally, it can be used as a supplemental text in graduate courses on representation theory.

Recenzijas

In the book under review, the main original articles, together with a plethora of related details, that required to understand the trace formula theory, have been unified and written in a uniform, compact and self-contained way. this book presents an excellent source for readers interested in the trace formula and its applications and should definitely make the process of entering the considered subject a lot easier both for graduate students and for interested researchers. (Ivan Mati, zbMATH 1359.22014, 2017)

Preface v
1 Introduction
1(24)
1 Motivation
1(3)
2 Correspondence Between GL(n) and Its Inner Forms
4(6)
3 Arthur's Invariant Trace Formula
10(15)
2 Local Theory
25(114)
1 Case of Division Algebras
25(7)
2 Orbital Integrals
32(23)
3 Automorphic Forms
55(3)
4 Trace Formula
58(3)
5 Density
61(5)
6 Characters
66(5)
7 Coinvariants
71(2)
8 Trace Functions
73(6)
9 Stability
79(2)
10 Discrete Series
81(1)
11 Decay
82(2)
12 Finiteness
84(1)
13 Simple Algebras
85(5)
14 Germs
90(1)
15 Comparison
91(1)
16 Existence
92(2)
17 Isolation
94(2)
18 Correspondence
96(2)
19 Tempered
98(3)
20 Irreducibility
101(2)
21 Unitarity
103(2)
22 Induction
105(2)
23 Cuspidal Global Correspondence
107(1)
24 Complements on Local Representations
108(8)
25 Complete Global Correspondence
116(10)
26 One Cuspidal Place
126(13)
3 Arthur's Noninvariant Trace Formula
139(76)
1 Preliminary Definitions
139(6)
2 The Kernel KP(x, y)
145(5)
3 A Review of Eisenstein Series
150(6)
4 The Second Formula for the Kernel
156(7)
5 The Modified Kernel Identity
163(3)
6 Some Geometric Lemmas
166(5)
7 Integrability kT0(x, f)
171(6)
8 Weighted Orbital Integrals
177(6)
9 A Truncation Operator
183(8)
10 Integrability of kTχ(x, f)
191(10)
11 The Operator MTP(τ)χ
201(5)
12 Evaluation in a Special Case
206(7)
13 Conclusion
213(2)
4 Study of Noninvariance
215(102)
1 Notation
215(5)
2 A Review of the Trace Formula
220(3)
3 The Distributions Jo and Jχ
223(8)
4 Noninvariance
231(7)
5 Intertwining Operators
238(2)
6 Normalization
240(4)
7 Real Groups
244(7)
8 p-Adic Groups
251(2)
9 Standard Representations
253(4)
10 Convex Sets and Some Related Functions
257(8)
11 Some Examples
265(8)
12 The Distributions JM(τλ)
273(4)
13 The Distributions JM, γ and JM, π
277(8)
14 Hecke Invariance
285(3)
15 The Distributions JM(τ, X)
288(4)
16 Residues
292(6)
17 Proof of Proposition 17.3
298(6)
18 Changes of Contour
304(3)
19 The Spaces Hac(G(F5)) and Iac(G(Fs))
307(4)
20 The Map φM
311(6)
5 The Invariant Trace Formula
317(124)
1 Invariant Harmonic Analysis
321(4)
2 The Invariant Distributions IM(γ)
325(9)
3 The Invariant Distributions IM(τ, X)
334(4)
4 Some Further Maps and Distributions
338(9)
5 A Contour Integral
347(7)
6 Reduction of Induction Hypotheses
354(3)
7 A Property of (G, M)-Families
357(8)
8 Descent
365(9)
9 Splitting
374(4)
10 Local Vanishing Properties for GL(n)
378(5)
11 Convex Polytopes
383(7)
12 The Invariant Trace Formula So Far
390(7)
13 The Geometric Side
397(8)
14 The Spectral Side
405(11)
15 Completion of the Induction Argument
416(7)
16 A Convergence Estimate
423(9)
17 Simpler Forms of the Trace Formula
432(5)
18 Global Vanishing Properties for GL(n)
437(4)
6 Main Comparison
441(108)
1 Notation and Conventions
441(8)
2 Statement of Parts (i) and (ii) of the Main Comparison
449(2)
3 Statement of Parts (iii) and (iv) of the Main Theorem
451(7)
4 Normalization Factors and the Trace Formula
458(11)
5 The Distributions IM(γ) and IεM(γ)
469(5)
6 The Distributions IM(τ, X) and IεM(τ, X)
474(2)
7 Geometric Induction Assumption
476(2)
8 The Numbers εM(S)
478(5)
9 Comparison of Germs
483(7)
10 Comparison of IεM(π, X, f) and IM(π, X, f)
490(11)
11 A Formula for Iεt(f)
501(6)
12 The Map εM
507(6)
13 Cancellation of Singularities
513(13)
14 Separation by Infinitesimal Character
526(8)
15 Elimination of Restrictions on f
534(7)
16 Completion of the Proof of the Main Theorem
541(8)
Bibliography 549(6)
Symbol Index 555(10)
Subject Index 565