Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence Applications and Innovations: 20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 20th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2024, held in Corfu, Greece, during June 2730, 2024.





The 100 full papers and 8 short papers included in this book were carefully reviewed and selected from 213 submissions. The diverse nature of papers presented demonstrates the vitality of AI algorithms and approaches. It certainly proves the very wide range of AI applications as well.
.- A Novel Signature for Distinguishing Non-Lesional from Lesional Skin
of Atopic Dermatitis Based on a Machine Learning Approach.

.- Advanced Mortality Prediction in Adult ICU: Introducing a Deep Learning
Approach in Healthcare.

.- Advancing scRNA-seq Data Integration via a Novel Gene Selection Method.

.- Data Augmentation Techniques for Cross-Domain WiFi CSI-based Human
Activity Recognition.

.- Enhancing Monkeypox Detection: A Machine Learning Approach to Symptom
Analysis and Disease Prediction.

.- Evaluation of Language Models for Multilabel Classification of Biomedical
Texts.

.- Higher-Order Adaptive Dynamical System Modelling of the Role of
Epigenetics in Major Depressive Disorder.

.- Human-In-The-Loop based Success Rate Prediction for Medical Crowdfunding.

.- Hybrid Explanatory Interactive Machine Learning for Medical Diagnosis.

.- Image-Based Human Action Recognition with Transfer Learning using Grad-CAM
for Visualization.

.- IRFold: An RNA Secondary Structure Prediction Approach.

.- Machine Learning Models for Predicting Celiac Disease  Based on
Non-invasive Clinical Symptoms.

.- Modeling Distributed and Flexible PHM System based on the Belief Function
Theory.

.- MTA-Net: a Multi-task Assisted Network for Whole-body Lymphoma
Segmentation.

.- Optimization of healthcare process management using machine learning.

.- Revisiting the problem of missing values in high-dimensional data and
feature selection effect.

.- Semantic Modelling for Representation and Integration of Health Data from
Wearable Devices.

.- The Role of Epigenetics in OCD: a Multi-Order Adaptive Network Model for
DNA-Methylation Pathways and the Development of OCD.

.- Towards an Unbiased Classification of Chest X-ray Images using a RL
Powered ACGAN Framework.

.- Vision transformer based tokenization for enhanced breast cancer
histopathological images classification.

.- WristSense: A Wrist-wear Dataset for Identifying Aggressive Tendencies.

.- A Network-based Intrusion Detection System based on widely used
Cybersecurity Datasets and State of the Art ML techniques.

.- Effective Machine Learning Techniques and API Realizations for Visualizing
Fraud Detection in Customer Transactions.

.- Enhancing Malware Detection through Machine Learning using XAI with SHAP
Framework.

.- Exploration of Ensemble Methods for Cyber Attack Detection in
Cyber-Physical Systems.

.- Local Community-Based Anomaly Detection in Graph Streams.

.- Synthetic Data Generation and Impact Analysis of Machine Learning Models
for Enhanced Credit Card Fraud Detection.