Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence Applications and Innovations: 20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 332,51 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 20th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2024, held in Corfu, Greece, during June 2730, 2024.





The 100 full papers and 8 short papers included in this book were carefully reviewed and selected from 213 submissions. The diverse nature of papers presented demonstrates the vitality of AI algorithms and approaches. It certainly proves the very wide range of AI applications as well.
.- AI-Driven Sentiment Trend Analysis: Enhancing Topic Modeling
Interpretation with ChatGPT.

.- An algorithmic data pipeline architecture for the production of
personalized telecom product offers.

.- Enhancing Financial Market Prediction with Reinforcement Learning and
Ensemble Learning.

.- Generating Profiles of News Commentators with Language Models.

.- GreekT5: Sequence-to-Sequence Models for Greek News Summarization.

.- Improving RAG Quality for Large Language Models with Topic-Enhanced
Reranking.

.- LLM Prompting versus  Fine-Tuning PLMs: A Comparative Study on Keyword
Generation from Customer Feedback.

.- Multi-Dimensional Classification on Social Media Data for Detailed
Reporting with Large Language Models.

.- Online Reinforcement Learning for Designing Automotive Hybrid Assembly
Sequence: A Task Clustering-Guided Approach.

.- Strategizing the Shallows: Leveraging Multi-Agent Reinforcement Learning
for Enhanced Tactical Decision-Making in Littoral Naval Warfare.

.- A Prediction Analysis for the Case of a Korean Police Dataset.

.- An AI-based Approach to Identify Financial Risks in Transportation
Infrastructure Construction Projects.

.- Benign Paroxysmal Positional Vertigo disorders classification using eye
tracking data.

.- Detecting Illicit Data Leaks on Android Smartphones Using an Artificial
Intelligence Models.

.- Enhancing Predictive Process Monitoring with Conformal Prediction.

.- Improved NO2 Prediction using Machine Learning Algorithms.

.- Improving Agricultural Image Classification by Mining Images.

.- Learning-based Short-Term Energy Consumption Forecasting.

.- Machine learning models for electricity generation forecasting from a PV
farm.

.- Pollutant concentration prediction by random forest to estimate a
contaminant source position.

.- Predictive Maintenance under Absence of Sensor Data.

.- Simulation Study for evaluating efficiency of McPhail traps in olive
groves.

.- SMT: Self-supervised approach for Multiple Animal Detection & Tracking.

.- The Impact of Augmentation Techniques on Icon Detection using Machine
Learning Techniques.

.- Toward Unsupervised Energy Consumption Anomaly Detection.

.- Unlocking User Privacy: A Systematic Survey of Factors and Methods in
Predicting App Permission Decisions.