Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence for Cybersecurity

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Advances in Information Security 54
  • Izdošanas datums: 15-Jul-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030970871
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Advances in Information Security 54
  • Izdošanas datums: 15-Jul-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030970871
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book explores new and novel applications of machine learning, deep learning, and artificial intelligence that are related to major challenges in the field of cybersecurity. The provided research goes beyond simply applying AI techniques to datasets and instead delves into deeper issues that arise at the interface between deep learning and cybersecurity.

This book also provides insight into the difficult "how" and "why" questions that arise in AI within the security domain. For example, this book includes chapters covering "explainable AI", "adversarial learning", "resilient AI", and a wide variety of related topics. It’s not limited to any specific cybersecurity subtopics and the chapters touch upon a wide range of cybersecurity domains, ranging from malware to biometrics and more.

Researchers and advanced level students working and studying in the fields of cybersecurity (equivalently, information security) or artificial intelligence (including deep learning, machine learning, big data, and related fields) will want to purchase this book as a reference. Practitioners working within these fields will also be interested in purchasing this book.

Part I: Malware-Related Topics.- Generation of Adversarial Malware and
Benign Examples using Reinforcement Learning.- Auxiliary-Classifier GAN for
Malware Analysis.- Assessing the Robustness of an Image-based Malware
Classifier with Small Level Perturbations Techniques.- Detecting Botnets
Through Deep Learning and Network Flow Analysis.- Interpretability of Machine
Learning-Based Results of Malware Detection Using a Set of Rules.- Mobile
Malware Detection using Consortium Blockchain.- BERT for Malware
Classification.- Machine Learning for Malware Evolution Detection.- Part
II: Other Security Topics.- Gambling for Success: The Lottery Ticket
Hypothesis in Deep Learning-based Side-channel Analysis.- Evaluating Deep
Learning Models and Adversarial Attacks on Accelerometer-Based Gesture
Authentication.- Clickbait Detection for YouTube Videos.- Survivability Using
Artificial Intelligence Assisted Cyber Risk Warning.- Machine Learning and
Deep Learning for Fixed-Text Keystroke Dynamics.- Machine Learning-Based
Analysis of Free-Text Keystroke Dynamic.- Free-Text Keystroke Dynamics for
User Authentication.
Mark Stamp has extensive experience in information security and machine learning, having worked in these fields within academic, industrial, and government environments. After completing his PhD research in cryptography at Texas Tech University, he spent more than seven years as a cryptanalyst with the United States National Security Agency (NSA), followed by two years developing a security product for a Silicon Valley start-up company. Since early in the present century, Dr. Stamp has been employed as a Professor in the Department of Computer Science at San Jose State University, where he teaches courses in machine learning and information security. To date, he has published more than 150 research articles, most of which deal with problems at the interface between machine learning and information security. Dr. Stamp served as a co-editor of the Handbook of Information and Communication Security (Springer, 2010) and Malware Analysis using Artificial Intelligence and Deep Learning (Springer 2020), and he is the author of multiple textbooks, including Information Security: Principles and Practice (Wiley, 3rd edition, 2021) and Introduction to Machine Learning with Applications in Information Security (Chapman and Hall/CRC, 2nd edition, 2022).



Corrado Aaron Visaggio is an associate professor at the Department of Engineering of the University of Sannio, where he teaches Security of Networks and Software Systems at the MSc in Computer Engineering. Currently he is also Chief Scientist Officer at Defence Tech, a company operating in Cybersecurity, Aerospace and Military Engineering. He obtained the MSc in Electronic Engineering (2001) from Politecnico di Bari, and the PhD in Information Engineering (2005) from University of Sannio. His main research interests are: malware analysis, data protection, data protection, threat intelligence. He teaches in Master Programs of Cybersecurity of University of Rome Tor Vergata, and the International School against organized crime organized by the Italian Ministry of Interior for the education of International Law Enforcement Agencies, and has been instructor at the Department of Intelligence, at the Italian Ministry of Interior. He is director of the Unisannio Chapter of the CINI Cybersecurity National Lab. He is in the Organizing Board of  CINI Cybersecurity National Lab. He leads the Cybersecurity Lab at the Department of Engineering of University of Sannio. He is the scientific leader of several research projects in Cybersecurity, funded by Private and Public Organizations. He collaborates with several Universities (ETH Zurich, University of San Jose, University of Castilla-La-Mancha, University of Lugano, University College Dublin, University of Delft, Cochin University of Science & Technology and SCMS School of Engineering & Technology). He has authored more than one hundred scientific papers and he serves in the Editorial Boards of International journals and Program Committees of international Conferences. He is among the founders of the SER&Practice software house, and SLIMER software House.

Fabio Di Troia is an Assistant Professor in the Computer Science department at San Jose State University, where he teaches information security and machine learning courses. He completed his PhD in computer science at Kingston University, London, researching applications of machine learning in the field of cybersecurity. His areas of focus are malware detection, malware design, cryptology, biometrics, and access control. In collaboration with colleagues sharing similar academic background, he co-founded the Silicon Valley Cybersecurity Institute (SVCSI) in 2019, a non-profit organization that aims to increase awareness in the cybersecurity domain for high-school, undergraduate, and graduate students, with particular emphasisin the underrepresented community. Within this organization, he holds the role of program director in software security, and he is also the program committee chair for the Silicon Valley Cybersecurity Conference (SVCC).



Francesco Mercaldo received his master degree in computer engineering from the University of Sannio (Benevento, Italy), with a thesis in software testing. He obtained his Ph.D. in 2015 with a dissertation on malware analysis using machine learning techniques. The research areas of Francesco are software testing, verification, and validation, with the emphasis on the application of empirical methods. Currently, he is working as Researcher at the University of Molise (Italy). He has written almost seventy papers for international journals and conferences.