Atjaunināt sīkdatņu piekrišanu

Artificial Intelligence-Empowered Bio-medical Applications: Challenges, Solutions and Development Guidelines [Hardback]

  • Formāts: Hardback, 287 pages, height x width: 235x155 mm, 113 Illustrations, color; 7 Illustrations, black and white; XXV, 287 p. 120 illus., 113 illus. in color., 1 Hardback
  • Sērija : Learning and Analytics in Intelligent Systems 49
  • Izdošanas datums: 18-Jun-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031901738
  • ISBN-13: 9783031901737
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 287 pages, height x width: 235x155 mm, 113 Illustrations, color; 7 Illustrations, black and white; XXV, 287 p. 120 illus., 113 illus. in color., 1 Hardback
  • Sērija : Learning and Analytics in Intelligent Systems 49
  • Izdošanas datums: 18-Jun-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031901738
  • ISBN-13: 9783031901737
Citas grāmatas par šo tēmu:

The book delves into advancements in personalized medicine, highlighting the transition from generalized treatments to tailored strategies through AI and machine learning. It first emphasizes the role of biomarkers in training predictive models and neural networks, enhancing disease diagnosis and patient management. It then explores AI-driven healthcare systems, particularly the use of microservices to improve scalability and management. Additionally, it examines regulatory challenges, the need for AI explainability, and the PINXEL framework, which defines explainability requirements using the technology acceptance model (TAM) and the diffusion of innovation theory (DOI).

Furthermore, the book evaluates the capabilities of large language models, including ChatGPT and GPT-4V, in medical applications, with a focus on diagnosis and structured assessments in general pathology. Lastly, it introduces an AI-powered system for primary care diagnosis that integrates language models, machine learning, and rule-based systems. The interactive AI assistants “Med|Primary AI assistant” and “Dermacen Analytica” leverage natural language processing, image analysis, and multi-modal AI to enhance patient interactions and provide healthcare professionals with high-accuracy, personalized diagnostic support.

By taking a holistic approach, the book underscores the integration of AI into healthcare, aiming to support medical professionals in patient diagnosis and management with precision and adaptability.

Introduction to AI-empowered Medical Soft[ 1]ware: Recent Advances and
Challen.- Personalized Nutrition Applications using Biomarkers and Machine
Learning.- Blood Exam Classification for Predicting Defin[ 1]ing Factors in
Metabolic Syndrome Diagnosis using Sup[ 1]port Vector Machine.- Extreme Value
Analysis applied in Dietary Data.- Iterative Microservices Approach for
Explain[ 1]able and Reliable AI in Medical Application.- Challenges in
Regulating and Validating AI[ 1]Driven Healthcar.- Framework for AI
Explainability Leveraging User Acceptance and Health Literacy Models.