Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence and Healthcare: The Impact of Algorithmic Bias on Health Disparities

  • Formāts - EPUB+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book explores the ethical problems of algorithmic bias and its potential impact on populations that experience health disparities by examining the historical underpinnings of explicit and implicit bias, the influence of the social determinants of health, and the inclusion of racial and ethnic minorities in data.  Over the last twenty-five years, the diagnosis and treatment of disease have advanced at breakneck speeds. Currently, we have technologies that have revolutionized the practice of medicine, such as telemedicine, precision medicine, big data, and AI.  These technologies, especially AI, promise to improve the quality of patient care, lower health care costs, improve patient treatment outcomes, and decrease patient mortality.  AI may also be a tool that reduces health disparities; however, algorithmic bias may impede its success. This book explores the risks of using AI in the context of health disparities. It is of interest to health services researchers, ethicists, policy analysts, social scientists, health disparities researchers, and AI policy makers.


Chapter 1. Artificial Intelligence and Algorithmic Bias.
Chapter 
2. What are Health Disparities.
Chapter
3. The Inclusion of Racial and
Ethnic Minority Groups Participation in Clinical Trials.
Chapter
4. The
Impact of Implicit Bias on Data Diversity.
Chapter
5. Will Artificial
Intelligence Improve Health Disparities?.
Chapter
6. Artificial Intelligence
and Health Disparities: Policy, Regulation, and Implications.
Throughout her professional career, Dr. Williams has worked on public health issues focused on vulnerable populations including minority health, health disparities, prisoner reentry, and drug treatment courts. Her current research focuses on the intersection of artificial intelligence, algorithmic bias, and health disparities.  





Dr. Williams received her doctorate in social policy, with a concentration in health services research, from Brandeis University, her juris doctor degree from George Mason School of Law, her master of laws degree in health law from Loyola University Chicago School of Law, and her masters degree in public health from the Johns Hopkins Bloomberg School of Public Health. She also has a bachelors degree in medical technology from the University of Maryland at Baltimore. 







Dr. Williams was the A. Leon Higginbotham Jr. Research Fellow in Social Justice at Harvard Law School and an H. Jack Geiger Congressional Fellow in Health Policy.