Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence and Machine Learning in 2D/3D Medical Image Processing

Edited by , Edited by (GGV (a central university) bilaspur), Edited by , Edited by
  • Formāts: 214 pages
  • Izdošanas datums: 22-Dec-2020
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000337136
  • Formāts - EPUB+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 214 pages
  • Izdošanas datums: 22-Dec-2020
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000337136

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Medical image fusion is a process which merges information from multiple images of the same scene. The fused image provides appended information that can be utilized for more precise localization of abnormalities. The use of medical image processing databases will help to create and develop more accurate and diagnostic tools.

Digital images have several benefits, such as faster and inexpensive processing cost, easy storage and communication, immediate quality assessment, multiple copying while preserving quality, swift and economical reproduction, and adaptable manipulation. Digital medical images play a vital role in everyday life. Medical imaging is the process of producing visible images of inner structures of the body for scientific and medical study and treatment as well as a view of the function of interior tissues. This process pursues disorder identification and management.

Medical imaging in 2D and 3D includes many techniques and operations such as image gaining, storage, presentation, and communication. The 2D and 3D images can be processed in multiple dimensions. Depending on the requirement of a specific problem, one must identify various features of 2D or 3D images while applying suitable algorithms. These image processing techniques began in the 1960s and were used in such fields as space, clinical purposes, the arts, and television image improvement. In the 1970s, with the development of computer systems, the cost of image processing was reduced and processes became faster. In the 2000s, image processing became quicker, inexpensive, and simpler. In the 2020s, image processing has become a more accurate, more efficient, and self-learning technology.

This book highlights the framework of the robust and novel methods for medical image processing techniques in 2D and 3D. The chapters explore existing and emerging image challenges and opportunities in the medical field using various medical image processing techniques. The book discusses real-time applications for artificial intelligence and machine learning in medical image processing. The authors also discuss implementation strategies and future research directions for the design and application requirements of these systems.

This book will benefit researchers in the medical image processing field as well as those looking to promote the mutual understanding of researchers within different disciplines that incorporate AI and machine learning.

FEATURES

  • Highlights the framework of robust and novel methods for medical image processing techniques
  • Discusses implementation strategies and future research directions for the design and application requirements of medical imaging
  • Examines real-time application needs
  • Explores existing and emerging image challenges and opportunities in the medical field
1. An Introduction to Medical Image Analysis in 3D
2. Automated Epilepsy
Seizure Detection from EEG Signals Using Deep CNN Model
3. Medical Image
De-Noising Using Combined Bayes Shrink and Total Variation Techniques
4.
Detection of Nodule and Lung Segmentation Using Local Gabor XOR Pattern in CT
Images
5. Medical Image Fusion Using Adaptive Neuro Fuzzy Inference System
6.
Medical Imaging in Healthcare Applications
7. Classication of Diabetic
Retinopathy by Applying an Ensemble of Architectures
8. Compression of
Clinical Images Using Different Wavelet Function
9. PSO-Based Optimized
Machine Learning Algorithms for the Prediction of Alzheimers Disease
10.
Parkinsons Disease Detection Using Voice Measurements
11. Speech Impairment
Using Hybrid Model of Machine Learning
12. Advanced Ensemble Machine Learning
Model for Balanced BioAssays
13. Lung Segmentation and Nodule Detection in 3D
Medical Images Using Convolution Neural Network
Rohit Raja, Sandeep Kumar, Shilpa Rani, K. Ramya Laxmi