Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence: Methodology, Systems, and Applications: 19th International Conference, AIMSA 2024, Varna, Bulgaria, September 18-20, 2024, Proceedings

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 15462
  • Izdošanas datums: 31-Jan-2025
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031815423
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 15462
  • Izdošanas datums: 31-Jan-2025
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031815423

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 19th International Conference on Artificial Intelligence: Methodology, Systems, and Applications, AIMSA 2024, held in Varna, Bulgaria, during September 1820, 2024.





The 18 revised full papers presented in this book were carefully reviewed and selected from 23 submissions. They cover a wide range of topics in AI and its applications: natural language processing, sentiment analyses, image processing, optimization, reinforcement learning, from deep ANNs to spike timing NNs, applications in economics, medicine and process control.
1 Multimodal Sentiment Analysis: Recognizing Sentiment in Memes.- Remote
Sensing Data for Predicting Crop Growth.- Cross-lingual Style Transfer TTS
for High-quality Machine Dubbing.- An Approach to Discovering, Tracking over
Time, and Summarizing Publicly Available Information on a Given
Topic.- Reinforcement Learning Control of Cart Pole System with Spike Timing
Neural Network Actor-critic Architecture.- Predictive and Explainable
Modelling in Economics on the Case Study of Remittance Prediction Using the
NeuDen AI Computational Architecture.- Deep Learning for Multi-class
Diagnosis of Thyroid Disorders using Selective Features.- Medical Ultrasound
Image Quality Assessment using Deep Learning.- Testing the NEAT Algorithm on
a PSPACE-Complete Problem.- Investigating the Regularization of Deep Neural
Networks for Affect Recognition with Relevance-Guided Local
Explanations.- Layered Data-Centric AI to Streamline Data Quality Practices
for Enhanced Automation.- Combining Graph NN and LLM for Improved Text-based
Emotion Recognition.- A Novel Study on Modelling and Adaptive Optimal Control
of a Tubular Reactor Based on Gaussian Processes.- Converging Dimensions:
Information Extraction and Summarization through Multisource, Multimodal, and
Multilingual Fusion.- Enhancing Question Answering in Lecture Videos with a
Multimodal Retrieval Augmented Generation Framework.- Agent-based Simulation
Leveraging Declarative Modeling for Efficient Resource Allocation in
Emergency Scenarios.- Enhancing Security in Federated Learning: Detection of
Synchronized Data Poisoning Attacks.- 3 Clinical and Acquisition Data for
Optimizing MGMT Methylation Status Prediction: A Comprehensive Ensemble
Strategy Emphasizing Non-Invasive Approaches.