Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence Security and Privacy: First International Conference on Artificial Intelligence Security and Privacy, AIS&P 2023, Guangzhou, China, December 3-5, 2023, Proceedings, Part I

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14509
  • Izdošanas datums: 03-Feb-2024
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789819997855
  • Formāts - EPUB+DRM
  • Cena: 83,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14509
  • Izdošanas datums: 03-Feb-2024
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789819997855

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This two-volume set LNCS 14509-14510, constitutes the refereed proceedings of the First International Conference on Artificial Intelligence Security and Privacy, AIS&P 2023, held in Guangzhou, China, during December 35, 2023.

The 40 regular papers and 23 workshop papers presented in this  two-volume set were carefully reviewed and selected from 115 submissions.

Topics of interest include, e.g., attacks and defence on AI systems; adversarial learning; privacy-preserving data mining; differential privacy; trustworthy AI; AI fairness; AI interpretability; cryptography for AI; security applications.





 
Fine-grained Searchable Encryption Scheme.- Fine-grained Authorized
Secure Deduplication with Dynamic Policy.- Deep Multi-Image Hiding with
Random Key.- Member Inference Attacks in Federated Contrastive Learning.- A
network traffic anomaly detection method based on shapelet and KNN.- DFaP:
Data Filtering and Purification Against Backdoor Attacks.- A Survey of
Privacy Preserving Subgraph Matching Method.- The Analysis of Schnorr
Multi-Signatures and the Application to AI.- Active Defense against Image
Steganography.- Strict Differentially Private Support Vector Machines with
Dimensionality Reduction.- Converging Blockchain and Deep Learning in UAV
Network Defense Strategy: Ensuring Data Security During Flight.- Towards
Heterogeneous Federated Learning: Analysis, Solutions, and Future
Directions.- From Passive Defense to Proactive Defence: Strategies and
Technologies.- Research on Surface Defect Detection System of Chip Inductors
Based on Machine Vision.- Multimodal fatigue detectionin drivers via
physiological and visual signals.- Protecting Bilateral Privacy in Machine
Learning-as-a-Service: A Differential Privacy Based Defense.- FedCMK: An
Efficient Privacy-Preserving Federated Learning Framework.- An embedded cost
learning framework based on cumulative gradient.- An Assurance Case Practice
of AI-enabled Systems on Maritime Inspection.- Research and Implementation of
EXFAT File System Reconstruction Algorithm Based on Cluster Size Assumption
and Computational Verification.- A Verifiable Dynamic Multi-Secret Sharing
Obfuscation Scheme Applied to Data LakeHouse.- DZIP: A Data
Deduplication-Compatible Enhanced Version of Gzip.- Efficient Wildcard
Searchable Symmetric Encryption with Forward and Backward Security.-
Adversarial Attacks against Object Detection in Remote Sensing Images.-
Hardware Implementation and Optimization of Critical Modules of SM9 Digital
Signature Algorithm.- Post-quantum Dropout-resilient Aggregation for
Federated Learning via Lattice-basedPRF.- Practical and Privacy-Preserving
Decision Tree Evaluation with One Round Communication.- IoT-Inspired
Education 4.0 Framework for Higher Education and Industry Needs.- Multi-agent
Reinforcement Learning Based User-Centric Demand Response with Non-Intrusive
Load Monitoring.- Decision Poisson: From universal gravitation to offline
reinforcement learning.- SSL-ABD:An Adversarial Defense MethodAgainst
Backdoor Attacks in Self-supervised Learning.- Personalized Differential
Privacy in the Shuffle Model.- MKD: Mutual Knowledge Distillation for
Membership Privacy Protection.- Fuzzing Drone Control System Configurations
Based on Quality-Diversity Enhanced Genetic Algorithm.- KEP: Keystroke Evoked
Potential for EEG-based User Authentication.- Verifiable Secure Aggregation
Protocol under Federated Learning.- Electronic voting privacy protection
scheme based on double signature in Consortium Blockchain.- Securing 5G
Positioning via Zero Trust Architecture.- Email Reading Behavior-informed
Machine Learning Model to Predict Phishing Susceptibility.