Atjaunināt sīkdatņu piekrišanu

Artificial Neural Networks - ICANN 2010: 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part I [Mīkstie vāki]

  • Formāts: Paperback / softback, 587 pages, weight: 937 g, 227 Illustrations, black and white; XXXI, 587 p. 227 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 6352
  • Izdošanas datums: 03-Sep-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642158188
  • ISBN-13: 9783642158186
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 587 pages, weight: 937 g, 227 Illustrations, black and white; XXXI, 587 p. 227 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 6352
  • Izdošanas datums: 03-Sep-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642158188
  • ISBN-13: 9783642158186
Citas grāmatas par šo tēmu:
th This volume is part of the three-volume proceedings of the 20 International Conference on Arti cial Neural Networks (ICANN 2010) that was held in Th- saloniki, Greece during September 15–18, 2010. ICANN is an annual meeting sponsored by the European Neural Network Society (ENNS) in cooperation with the International Neural Network So- ety (INNS) and the Japanese Neural Network Society (JNNS). This series of conferences has been held annually since 1991 in Europe, covering the ?eld of neurocomputing, learning systems and other related areas. As in the past 19 events, ICANN 2010 provided a distinguished, lively and interdisciplinary discussion forum for researches and scientists from around the globe. Ito eredagoodchanceto discussthe latestadvancesofresearchandalso all the developments and applications in the area of Arti cial Neural Networks (ANNs). ANNs provide an information processing structure inspired by biolo- cal nervous systems and they consist of a large number of highly interconnected processing elements (neurons). Each neuron is a simple processor with a limited computing capacity typically restricted to a rule for combining input signals (utilizing an activation function) in order to calculate the output one. Output signalsmaybesenttootherunitsalongconnectionsknownasweightsthatexcite or inhibit the signal being communicated. ANNs have the ability “to learn” by example (a large volume of cases) through several iterations without requiring a priori ?xed knowledge of the relationships between process parameters.
ANN Applications.- Bayesian ANN.- Bio Inspired Spiking ANN.-
Biomedical ANN.- Computational Neuroscience.- Feature Selection/Parameter
Identification and Dimensionality Reduction.- Filtering.- Genetic
Evolutionary Algorithms.- Image Video and Audio Processing.