Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Neural Networks and Machine Learning - ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26-29, 2023, Proceedings, Part IX

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14262
  • Izdošanas datums: 22-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031442018
  • Formāts - EPUB+DRM
  • Cena: 83,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14262
  • Izdošanas datums: 22-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031442018

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023.

The 426 full papers and 9 short papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.


MEA-TransUNet: a Multiple External Attention Network for Multi-Organ
Segmentation.- Membership-Grade Based Prototype Rectification for
Fine-Grained Few-Shot Classification.- Multi-grained Aspect Fusion for Review
Response Generation.- Multiple Object Tracking based on Variable
GIoU-Embedding Matrix and Kalman Filter Compensation.- Multi-relation
Identification for Few-shot Document-level Relation Extraction.- Multi-Task
Learning for Mongolian Morphological Analysis.- Multi-task Pre-training for
Lhasa-Tibetan Speech Recognition.- Mutual Information Dropout: Mutual
Information Can  Be All You Need.- Non-Outlier Pseudo-Labeling for Short Text
Clustering.- Optimal Node Embedding Dimension Selection Using Overall
Entropy.- PairEE: A Novel Pairing-Scoring Approach for Better Overlapping
Event Extraction.- PCB Component Rotation Detection Based on Polarity
Identifier Attention.- PCDialogEval: Persona and Context Aware
EmotionalDialogue Evaluation.- PlantDet: A benchmark for Plant Detection in
the Three-Rivers-Source Region.- PO-DARTS: Post-Optimizing the Architectures
Searched by Differentiable Architecture Search Algorithms.- Predicting high
vs low mother-baby synchrony with GRU-based ensemble models.- Properties of
the weighted and robust implicitly weighted correlation coefficients.- PSML:
Prototype-Based OSSL Framework for Multi-Information Mining.- Pure
Physics-Informed Echo State Network of ODE Solution Replicator.- RegionRel:A
Framework for Jointly Extracting Relational Triplets by Performing Sub-tasks
by Region.- Robustness to Variability and Asymmetry of In-memory On-chip
Training.- Selecting Distinctive-Variant Training Samples Base on Intra-class
Similarity.- Semantic Information Mining and Fusion Method for Bot
Detection.- Semilayer-Wise Partial Quantization without Accuracy Degradation
or Back Propagation.- ShadowGAN for Line Drawings Shadow Generation.- Ship
Attitude Prediction Based on Dynamic Sliding Window and
EEMD-SSA-BiLSTM.- Solving Math Word Problem with External Knowledge and
Entailment Loss.- Spatially Invariant and Frequency-Aware CycleGAN for
Unsupervised MR-to-CT Synthesis.- Spatio-temporal Attention Model with Prior
Knowledge for Solar Wind Speed Prediction.- Spatiotemporal model with
attention mechanism for ENSO Predictions.- SPM-Diffusion for Temperature
Prediction.- S-SOLVER: Numerically stable adaptive step size solver for
neural ODEs.- TableSF: A Structural Bias Framework for Table-to-Text
Generation.- TCS-LipNet:Temporal & Channel & Spatial Attention-based Lip
Reading Network.- The Dynamic Selection of Combination Methods in Classifier
Ensembles by Region of Competence.- The progressive detectors and
discriminative feature descriptors combining global and local
information.- Towards Better Dialogue Utterance Rewriting via a Gated
Span-Copy Mechanism.- TSP Combination Optimization with Semi-local Attention
Mechanism.- UDCGN: Uncertainty-Driven Cross-Guided Network for Depth
Completion of Transparent Objects.- Use of Machine Learning Algorithms to
Analyze the Digit Recognizer Problem in an Effective Manner.- Vulnerability
Analysis of Continuous Prompts for Pre-trained Language Models.