Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Neural Networks and Machine Learning - ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26-29, 2023, Proceedings, Part X

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14263
  • Izdošanas datums: 21-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031442049
  • Formāts - EPUB+DRM
  • Cena: 83,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14263
  • Izdošanas datums: 21-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031442049

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023.

The 426 full papers and 9 short papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.


A Comparative Study of Sentence Embedding Models for Assessing Semantic
Variation.- A Deep Learning based Method for Generating Holographic Acoustic
Fields from Phased Transducer Arrays.- A Depth-guided Attention Strategy for
Crowd Counting.- A Noise Convolution Network for Tampering
Detection.- Attention-based Feature Interaction Deep Factorization Machine
for CTR Prediction.- Block-level Stiffness Analysis of Residual
Networks.- CKNA: Kernel Hyperparameters Optimization Method for Group-wise
CNNs.- Conditional Convolution Residual Network for Efficient
Super-Resolution.- Cross Attention with Deep Local Features for Few-shot
Image Classification.- Deep Video Compression Based on 3D Convolution
Artifacts Removal and Attention Compression Module.- Deep-learning Based
Three Channel Defocused Projection Profilometry.- Depthwise Convolution with
Channel Mixer: Rethinking MLP in MetaFormer for Faster and More Accurate
Vehicle Detection.- DLUIO: Detecting Useful Investor Opinions by Deep
Learning.- Dynamic obstacle avoidance for unmanned aerial vehicle using
dynamic vision sensor.- Empirical Study on the Effect of Residual Networks on
the Expressiveness of Linear Regions.- Energy Complexity Model for
Convolutional Neural Networks.- Enhancing the Interpretability of Deep
Multi-Agent Reinforcement Learning via Neural Logic Reasoning.- Evidential
Robust Deep Learning for Noisy Text2text Question Classification.- FBPFormer:
Dynamic Convolutional Transformer for Global-Local-Contexual Facial Beauty
Prediction.- Heavy-Tailed Regularization of Weight Matrices in Deep Neural
Networks.- Interaction of Generalization and Out-of-Distribution Detection
Capabilities in Deep Neural Networks.- Long-distance Pipeline Intrusion
Warning Based on Environment Embedding From Distributed Optical Fiber
Sensing.- LSA3D: Lightweight Separate Asynchronous 3D Convolutional Neural
Network for Gait Recognition.- MADNet: EEG-based Depression Detection using a
Deep Convolution Neural Network Framework with Multi-dimensional
Attention.- Maintenance automation using deep learning methods a case study
from the aerospace industry.- MCASleepNet: Multimodal channel attention-based
deep neural network for automatic sleep staging.- Multi-label Image Deep
Hashing with Hybrid Loss of Global Center and Local
Alignment.- Multi-relation Representation Learning based Deep Network for
Patent Classification.- One Hip Wonder: 1D-CNNs Reduce Sensor Requirements
for Everyday Gait Analysis.- Patches Channel Attention For Human Sitting
Posture Recognition.- RA-Net: A Deep Learning Approach based on Residual
Structure and Attention Mechanism for Image Copy-move Forgery
Detection.- Rethinking CNN Architectures in Transformer
Detectors.- Robustness of Biologically-inspired filter-based ConvNet to
Signal Perturbation.- Self-Supervised Graph Convolution for Video Moment
Retrieval.- Siamese Network based on MLP and Multi-head Cross Attention for
Visual Object Tracking.- Taper Residual Dense Network for Audio
Super-Resolution.- VPNDroid: Malicious Android VPN detection using a CNN-RF
method.- Who breaks early, looses: goal oriented training of deep neural
networks based on port Hamiltonian dynamics.- BLR:A multi-modal sentiment
analysis model.- Detecting Negative Sentiment on Sarcastic Tweets for
Sentiment Analysis.- Local or Global: The Variation in the Encoding of Style
Across Sentiment and Formality.- Prompt-oriented Fine-tuning Dual Bert for
Aspect-Based Sentiment Analysis.- Towards Energy-Efficient Sentiment
Classification with Spiking Neural Networks.- Using Masked Language Modeling
to Enhance BERT-based Aspect-Based Sentiment Analysis for Affective Token
Prediction.