Atjaunināt sīkdatņu piekrišanu

Astrochemistry: From The Big Bang To The Present Day [Mīkstie vāki]

(Univ Of Oxford, Uk)
  • Formāts: Paperback / softback, 228 pages
  • Sērija : Essential Textbooks in Chemistry
  • Izdošanas datums: 19-Apr-2017
  • Izdevniecība: World Scientific Europe Ltd
  • ISBN-10: 1786340380
  • ISBN-13: 9781786340382
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 50,81 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 228 pages
  • Sērija : Essential Textbooks in Chemistry
  • Izdošanas datums: 19-Apr-2017
  • Izdevniecība: World Scientific Europe Ltd
  • ISBN-10: 1786340380
  • ISBN-13: 9781786340382
Citas grāmatas par šo tēmu:
'This book could appeal to astronomers interested in interstellar and circumstellar matter who would like to know more about the processes in them from a chemist's perspective in a modern textbook. Overall, I found this book very informative and clearly written 'The Observatory MagazineThe rapidly growing field of astrochemistry focuses on the chemistry occurring in stars, planets, and the interstellar medium, bringing together elements of chemistry, physics, astrophysics, and biology. Astrochemistry describes the chemical history of the Universe, our solar system, and our planet. It explores in some detail the 'alien' chemistry occurring in interstellar gas clouds, the regions where stars and planets are formed, and also looks at the theoretical and experimental methods that allow us to carry out Earth-based studies of astrochemistry.The evolution of the Universe and the complex chemistry occurring both in interstellar space and in the planetary systems that form in these regions is explained primarily in terms of basic principles of physical chemistry. While there is plenty to interest the general reader, this book is aimed at intermediate to advanced undergraduates of chemistry and astrochemistry, highlighting many different aspects of physical chemistry and demonstrating their relevance to the world we live in.This book was written in conjunction with Atmospheric Chemistry: From the Surface to the Stratosphere, Grant Ritchie (2017) World Scientific Publishing.
Preface v
Author Biography vii
Acknowledgements ix
List of Figures
xvii
List of Tables
xxiii
1 Measuring the Universe
1(10)
1.1 Studying the Universe via spectroscopy
1(4)
1.1.1 Line positions
1(2)
1.1.2 Line intensities
3(1)
1.1.3 Principle of operation of an astronomical spectrograph
4(1)
1.1.4 Spectral windows for Earth-based observations
4(1)
1.2 Doppler shift
5(1)
1.3 Doppler lineshape
6(1)
1.4 Doppler shift, the Hubble constant, and the age of the Universe
7(1)
1.5 Questions
8(3)
1.5.1 Essay-style questions
8(1)
1.5.2 Problems
9(2)
2 From the Big Bang to the First Atoms
11(8)
2.1 The very early Universe: The building blocks of matter
11(1)
2.2 The nature of the expanding Universe
11(2)
2.3 The first particles
13(2)
2.4 Hydrogen and helium nuclei
15(1)
2.5 The first atoms
15(1)
2.6 Questions
16(3)
2.6.1 Essay-style questions
16(1)
2.6.2 Problems
16(3)
3 Stars and the Creation of the Higher Elements
19(10)
3.1 Star formation and the nucleosynthesis of heavier elements
19(4)
3.2 Dispersion of the chemical elements into interstellar space
23(2)
3.3 Cosmic abundance of the elements
25(1)
3.4 Questions
26(3)
3.4.1 Essay-style questions
26(1)
3.4.2 Problems
26(3)
4 Interstellar Chemistry --- Molecules in Space
29(18)
4.1 The interstellar medium
29(3)
4.1.1 Diffuse interstellar medium
29(1)
4.1.2 Giant molecular clouds
30(2)
4.1.3 Circumstellar medium
32(1)
4.2 Chemistry in interstellar space
32(2)
4.3 Molecular synthesis in interstellar gas clouds
34(1)
4.4 Ionisation processes in the interstellar medium
34(2)
4.5 Gas-phase chemical reactions in the interstellar medium
36(1)
4.6 Bond-forming reactions
36(2)
4.6.1 Radiative association
36(1)
4.6.2 Associative detachment
37(1)
4.6.3 Dust-grain-catalysed reactions
37(1)
4.7 Bond breaking reactions
38(1)
4.7.1 Photodissociation and collisional dissociation
38(1)
4.7.2 Dissociative recombination
39(1)
4.8 Rearrangement reactions
39(3)
4.8.1 Charge transfer
39(1)
4.8.2 Neutral reactions
40(1)
4.8.3 Ion-molecule reactions
40(1)
4.8.3.1 Hydrogen atom abstraction
40(1)
4.8.3.2 Proton transfer
41(1)
4.8.3.3 Carbon insertion
41(1)
4.8.3.4 Rearrangement reactions
42(1)
4.9 Neutralisation processes in the interstellar medium
42(1)
4.10 Summary
43(1)
4.11 Questions
43(4)
4.11.1 Essay-style questions
43(1)
4.11.2 Problems
44(3)
5 Laboratory-Based Astrochemistry: Theory
47(50)
5.1 Laboratory-based astrochemistry
47(1)
5.2 The grand challenge: Chemical modelling of giant molecular clouds
48(3)
5.2.1 The search for biological molecules
49(1)
5.2.2 The diffuse interstellar bands (DIBs)
50(1)
5.3 Theoretical astrochemistry I: Spectroscopic data
51(8)
5.3.1 Rotational transition frequencies
53(2)
5.3.2 Vibrational transition frequencies
55(3)
5.3.3 Electronic transition frequencies
58(1)
5.3.4 Transition intensities
58(1)
5.4 Theoretical astrochemistry II: Kinetic and dynamical data
59(30)
5.4.1 Types of collision
60(1)
5.4.2 Relative velocity
60(1)
5.4.3 Collision energy, total kinetic energy, and conservation of linear momentum
61(1)
5.4.4 Conservation of energy and energy available to the products
62(1)
5.4.5 Impact parameter, b, and opacity function, P(b)
62(1)
5.4.6 Collision cross-section, σc
63(1)
5.4.7 Reaction cross-section, σr
64(1)
5.4.8 The excitation function, σr(Ecoll), and the thermal rate constant, k(T)
65(1)
5.4.8.1 Exoergic with no barrier
66(1)
5.4.8.2 Endoergic or exoergic with a barrier
67(1)
5.4.9 Orbital angular momentum, L, and conservation of angular momentum
67(2)
5.4.10 The interaction potential and its effect on the collision cross-section
69(2)
5.4.11 Atomic and molecular interactions
71(1)
5.4.12 The potential energy surface for a polyatomic system
71(2)
5.4.13 Construction of the potential energy surface
73(1)
5.4.14 The potential energy surface and the collision dynamics
73(2)
5.4.15 The potential energy surface for a linear triatomic system
75(2)
5.4.16 Reactive and non-reactive trajectories across the potential energy surface
77(2)
5.4.17 General features of potential energy surfaces
79(1)
5.4.18 Examples of potential energy surfaces for real chemical systems
80(1)
5.4.18.1 The simplest chemical reaction: H + H2 → H2 + H
80(1)
5.4.18.2 Photodissociation of NO2
81(1)
5.4.18.3 H + CO2 → OH + CO and OH + SO → H + SO2
82(1)
5.4.18.4 The Ar + H + ArH+ + H reaction
82(2)
5.4.19 Orbital angular momentum, centrifugal barriers and the effective potential
84(1)
5.4.20 A simple model for the rate of ion-molecule reactions
85(4)
5.4.21 Reaction cross-sections from quasi-classical trajectory calculations
89(1)
5.5 Summary
89(1)
5.6 Questions
90(7)
5.6.1 Essay-style questions
90(1)
5.6.2 Problems
90(7)
6 Laboratory-Based Astrochemistry: Experiment
97(38)
6.1 Experimental astrochemistry I: Spectroscopic data
97(14)
6.1.1 Molecular beams
98(1)
6.1.1.1 Effusive sources
99(1)
6.1.1.2 Supersonic sources
100(2)
6.1.2 Fourier-transform microwave spectroscopy
102(1)
6.1.3 Laser-induced fluorescence
103(1)
6.1.4 Resonance-enhanced multiphoton ionization (REMPI)
104(2)
6.1.5 Cavity-enhanced absorption spectroscopy methods
106(1)
6.1.5.1 Cavity ring-down spectroscopy
107(2)
6.1.5.2 Cavity-enhanced absorption spectroscopy
109(1)
6.1.6 Molecular size considerations
110(1)
6.2 Experimental astrochemistry II: Gas-phase kinetic and dynamical data
111(10)
6.2.1 Ion cyclotron resonance mass spectrometry
112(1)
6.2.1.1 The ion cyclotron resonance technique
112(3)
6.2.1.2 Measuring ion-molecule rate constants via ICR-MS
115(1)
6.2.2 The flowing afterglow technique
116(1)
6.2.3 The selected-ion flow tube
117(1)
6.2.4 The CRESU method
117(1)
6.2.5 Coulomb crystals
118(2)
6.2.6 Neutral reactions
120(1)
6.3 Experimental astrochemistry III: Dust-grain chemistry
121(4)
6.3.1 Ice structures via infrared spectroscopy
121(2)
6.3.2 Thermodynamics of adsorption and desorption via temperature-programmed desorption
123(1)
6.3.3 Photoinitiated molecular synthesis in interstellar ice analogues
124(1)
6.3.4 Formation of H2 on ice surfaces
124(1)
6.4 Case study: Ethylene glycol
125(4)
6.5 Summary
129(1)
6.6 Questions
129(6)
6.6.1 Essay-style questions
129(1)
6.6.2 Problems
130(5)
7 Formation of the Solar System and the Evolution of Earth
135(40)
7.1 The Solar nebula
136(2)
7.2 The protoplanetary disk
138(1)
7.3 Formation of the planets
138(5)
7.4 The early Earth, and formation of the Moon
143(4)
7.4.1 The Moon's orbit and tidal locking
145(2)
7.5 The layered structure of the Earth
147(8)
7.5.1 The core and the Earth's magnetic field
148(1)
7.5.2 The mantle
149(3)
7.5.3 The crust
152(1)
7.5.3.1 Divergent plate boundaries
153(1)
7.5.3.2 Convergent plate boundaries
153(2)
7.5.4 The primordial atmosphere
155(1)
7.6 Oceans and tides
155(3)
7.7 Erosion and weathering
158(2)
7.8 Life and the oxygen atmosphere
160(4)
7.9 Fossilisation and fossil fuels
164(2)
7.10 Other Solar systems
166(3)
7.11 Further reading
169(1)
7.12 Questions
169(6)
7.12.1 Essay-style questions
169(1)
7.12.2 Problems
170(5)
Appendix A Rates of Chemical Reactions
175(6)
A.1 Reactions occurring in a single step
175(2)
A.2 Reactions occurring in multiple steps
177(2)
A.3 Experimental kinetics studies
179(2)
Appendix B The Variation Principle and the Linear Variation Method
181(4)
B.1 The variation principle
181(1)
B.2 The linear variation method
182(3)
Appendix C Mass-Weighted Coordinates and the Skew Angle
185(4)
Answers to Numerical Problems 189(6)
Index 195