Atjaunināt sīkdatņu piekrišanu

E-grāmata: Asymptotic Analysis and Boundary Layers

  • Formāts: PDF+DRM
  • Sērija : Scientific Computation
  • Izdošanas datums: 22-Mar-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540464891
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Scientific Computation
  • Izdošanas datums: 22-Mar-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540464891
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows.

Recenzijas

From the book reviews:

"The book falls into two quite distinct parts, reflecting the expertises of the two authors. The first part gives a detailed and formal description of asymptotic methods, whilst the second part considers a number of fluid mechanics problems. There are numerous problems presented at the end of each chapter, which are accompanied by extremely comprehensive solutions . this book should prove a useful text for final year undergraduate students and for postgraduate (both taught and research) students wishing to master modern asymptotic methods." (P. W. Duck, Mathematical Reviews, Issue 2008 a)

The novelty of this book lies in the use of thorough and advanced singular perturbation methods in combination with detailed applications to fluid mechanics. In the combination of asymptotics and fluid mechanics in such a fundamental and detailed approach, the book is unique in the science literature. (Ferdinand Verhulst, Dynamical Systems Magazine, October, 2007)





"Asymptotic Analysis and Boundary Layers is an extended English edition of Analyse asymptotique et couche limite published in the Springer series Mathématique et Applications. The book presents a new method of asymptotic analysis of boundary layer problems, the successive Complementary Expansion Method (SCEM). With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is selfcontained. It is accessible to graduate and postgraduate students of engineering and physics with a good knowledge in fluid mechanics." (Francisco Perez Acosta, Zentralblatt MATH, Vol. 1115 (17), 2007)

Preface v
Acknowledgements viii
Abbreviations xvii
Introduction
1(6)
Introduction to Singular Perturbation Problems
7(24)
Regular and Singular Problems
8(7)
Linear Oscillator
8(3)
Secular Problem
11(3)
Singular Problem
14(1)
Approximation Methods for Singular Perturbation Problems
15(10)
Method of Matched Asymptotic Expansions
16(3)
Successive Complementary Expansion Method
19(1)
Multiple Scale Method
20(2)
Poincare-Lighthill's Method
22(2)
Renormalization Group Method
24(1)
Conclusion
25(6)
Problems
25(6)
Boundary Layer Structure
31(12)
Study of a Second Order Differential Equation
31(4)
Analysis of each Case
35(5)
Conclusion
40(3)
Problems
41(2)
Asymptotic Expansions
43(16)
Order Functions. Order of a Function
43(3)
Definition of an Order Function
43(1)
Comparison of Order Functions
43(1)
Total Ordering
44(1)
Order of a Function
45(1)
Asymptotic Sequence
46(1)
Definition of an Asymptotic Sequence
46(1)
Class of Equivalence
46(1)
Gauge Functions
47(1)
Asymptotic Expansion
47(8)
Asymptotic Approximation
47(2)
Regular Functions
49(1)
Regular and Generalized Asymptotic Expansions
50(1)
Convergence and Accuracy
51(3)
Operations on Asymptotic Expansions
54(1)
Conclusion
55(4)
Problems
55(4)
Successive Complementary Expansion Method
59(40)
Method of Matched Asymptotic Expansions
59(6)
Expansion Operator
59(1)
Outer Expansion - Inner Expansion
60(1)
Asymptotic Matching
61(4)
Boundary Layer
65(2)
Expansion Operator to a Given Order
65(1)
Significant Approximations
66(1)
Intermediate Matching
67(4)
Kaplun's Extension Theorem
67(1)
Study of Examples
67(2)
Rule of Intermediate Matching
69(2)
Asymptotic Matching Principle
71(1)
Van Dyke's Principle
71(1)
Modified Van Dyke's Principle
72(1)
Examples and Counter-Examples
72(4)
Example 1
72(1)
Example 2
73(1)
Example 3
74(1)
Example 4
75(1)
Discussion of the Matching Principle
76(5)
Corrective Boundary Layer
77(2)
The MVDP from the Overlap Hypothesis
79(2)
Successive Complementary Expansion Method
81(5)
Principle
81(3)
Equivalence of MVDP and of Regular SCEM
84(2)
Applications of SCEM
86(4)
Example 1
86(2)
Example 2
88(1)
Example 3
89(1)
Conclusion
90(9)
Problems
91(8)
Ordinary Differential Equations
99(34)
Example 1
99(8)
Application of MMAE
100(2)
Application of SCEM
102(5)
Example 2
107(5)
Application of MMAE
107(2)
Application of SCEM
109(2)
Identification with MMAE Results
111(1)
Numerical Results
112(1)
Example 3
112(6)
Application of MMAE
112(4)
Application of SCEM
116(2)
Identification with MMAE Results
118(1)
Stokes-Oseen's Flow Model
118(3)
Application of SCEM
118(2)
Numerical Results
120(1)
Terrible Problem
121(4)
Application of SCEM
122(3)
Numerical Results
125(1)
Conclusion
125(8)
Problems
127(6)
High Reynolds Number Flows
133(36)
Boundary Layer Theories
135(13)
Prandtl's Boundary Layer
135(5)
Triple Deck
140(8)
Analysis of an Integral Method
148(7)
Integral Method
148(3)
Direct Mode
151(1)
Inverse Mode
152(1)
Simultaneous Mode
153(2)
Viscous-Inviscid Interaction
155(2)
Conclusion
157(12)
Problems
158(11)
Interactive Boundary Layer
169(16)
Application of SCEM
170(3)
Outer Approximation
170(1)
Determination of a Uniformly Valid Approximation
171(2)
Gauge for the Pressure
173(1)
First Order Interactive Boundary Layer
173(2)
Generalized Boundary Layer Equations
173(1)
Boundary Conditions
174(1)
Estimate of the Remainders of Equations
175(1)
Second Order Interactive Boundary Layer
175(2)
Generalized Boundary Layer Equations
175(1)
Boundary Conditions
176(1)
Estimate of the Remainders of Equations
176(1)
Displacement Effect
177(1)
Reduced Model for an Irrotational External Flow
178(2)
Conclusion
180(5)
Problems
181(4)
Applications of Interactive Boundary Layer Models
185(30)
Calculation of a Flow with Separation
186(4)
Definition of the Flow
186(1)
Numerical Method
186(2)
Results
188(2)
Application to Aerodynamic Flows
190(5)
Flat Plate of Finite Length
190(2)
Airfoils at High Reynolds Numbers
192(3)
Influence of a Rotational External Flow
195(16)
Inviscid Flow
195(2)
Method of Resolution
197(3)
Flows Studied
200(1)
Results
200(11)
Conclusion
211(4)
Problems
211(4)
Regular Forms of Interactive Boundary Layer
215(22)
Second Order Boundary Layer Model
215(6)
Second Order Interactive Boundary Layer Model
217(1)
Van Dyke's Second Order Model
217(4)
Triple Deck Model
221(5)
Flow on a Flat Plate with a Small Hump
221(2)
Regular Expansions
223(3)
Summary of Approximations of Navier-Stokes Equations
226(1)
Conclusion
226(11)
Problems
227(10)
Turbulent Boundary Layer
237(30)
Results of the Standard Asymptotic Analysis
237(6)
Averaged Navier-Stokes Equations
237(1)
Scales
238(1)
Structure of the Flow
239(4)
Application of SCEM
243(6)
First Approximation
243(1)
Contribution of the Outer Region of the Boundary Layer
243(3)
Contribution of the Inner Region of the Boundary Layer
246(3)
Interactive Boundary Layer
249(5)
First Order Model
249(1)
Second Order Model
250(1)
Global Model
250(1)
Reduced Model for an Irrotational External Flow
251(3)
Approximation of the Boundary Layer: Velocity Profile
254(6)
Formulation of the Problem
254(2)
Turbulence Model
256(1)
Outer Region
256(1)
Equation to Solve
257(1)
Examples of Results
258(2)
Conclusion
260(7)
Problems
260(7)
Channel Flow
267(34)
Formulation of the problem
267(3)
Uniformly Valid Approximation
270(2)
IBL Model for the Lower Wall
272(2)
Global IBL Model
274(1)
Numerical Solution
275(4)
General Method
275(2)
Simplified Method for the Pressure
277(2)
Application of the Global IBL model
279(16)
Discussion of the Numerical Procedure
279(4)
Comparisons with Smith's theory
283(7)
Comparison with Navier-Stokes Solutions
290(5)
Conclusion
295(6)
Problems
295(6)
Conclusion
301(31)
Appendices
Navier-Stokes Equations
303(2)
Elements of Two-Dimensional Linearized Aerodynamics
305(4)
Thickness Problem (Non Lifting Case)
306(1)
Zero-Thickness Problem (Lifting Case)
307(2)
Solutions of the Upper Deck of the Triple Deck Theory
309(10)
Two-Dimensional Flow
309(3)
Three-Dimensional Flow
312(1)
Zero Perturbations at Infinity
313(1)
Non Zero Cross-Flow Perturbations at Downstream Infinity
314(5)
Second Order Triple Deck Theory
319(8)
Main Results
319(6)
Global Model for the Main Deck and the Lower Deck
325(2)
Behaviour of an Asymptotic Expansion
327(5)
Formulation of the Problem
327(1)
Study of the Gauge Functions
328(2)
Study of the Outer Expansion
330(2)
Solutions of Problems 332(87)
References 419(8)
Author index 427(1)
Subject index 428