Atjaunināt sīkdatņu piekrišanu

Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate [Hardback]

Edited by , Edited by , Edited by (EUMETSAT, Darmstadt, Germany)
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 360,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
Citas grāmatas par šo tēmu:
The book describes the morphological, physical and chemical properties of aerosols from various natural and anthropogenic sources to help the reader better understand the direct role of aerosol particles in scattering and absorbing short- and long-wave radiation.
List Of Contributors xv
Preface xix
Foreword xxi
Acknowledgments xxiii
1 Primary and Secondary Sources of Atmospheric Aerosol 1(86)
Claudio Tomasi
Angelo Lupi
1.1 Introduction
1(5)
1.2 A General Classification of Aerosol Sources
6(1)
1.3 Primary Aerosols of Natural Origin
7(24)
1.3.1 Sea-Salt Particles
8(5)
1.3.2 Mineral Dust
13(7)
1.3.3 Biogenic Aerosols
20(3)
1.3.4 Forest Fire Smoke
23(4)
1.3.5 Volcanic Dust in the Troposphere
27(3)
1.3.6 Cosmic Dust
30(1)
1.4 Secondary Aerosols of Natural Origin
31(17)
1.4.1 Natural Sulfate Particles from Tropospheric SO2 and Sulfur Compounds
32(5)
1.4.2 Natural Nitrate Particles from Tropospheric Nitrogen Oxides
37(4)
1.4.3 Organic Aerosols from Biogenic Volatile Organic Compounds
41(1)
1.4.4 Sulfate Particles from Marine and Volcanic SO2 Formed in the Stratosphere
42(6)
1.5 Primary Anthropogenic Aerosols
48(11)
1.5.1 Industrial Dust
50(1)
1.5.2 Anthropogenic Aerosols from Fossil Fuel Combustion and Carbonaceous (Soot) Particles
51(7)
1.5.3 Anthropogenic Aerosols from Waste and Biomass Burning
58(1)
1.6 Secondary Anthropogenic Aerosols
59(11)
1.6.1 Secondary Particles from SO2
60(4)
1.6.2 Secondary Particles from NOx
64(4)
1.6.3 Secondary Organic Aerosols
68(2)
1.7 Concluding Remarks on the Global Annual Emission Fluxes of Natural and Anthropogenic Aerosol Mass
70(5)
Abbreviations
75(1)
List of Symbols
75(1)
References
76(11)
2 Aerosol Nucleation in the Terrestrial Atmosphere 87(28)
Karine Sellegri
Julien Boulon
2.1 Introduction
87(1)
2.2 Theoretical Basis of Nucleation and Growth of New Particles in the Atmosphere
88(9)
2.2.1 Introduction to Nucleation Theories Useful in Atmospheric Sciences
88(7)
2.2.1.1 The Unary System Model
89(2)
2.2.1.2 The H2SO4-H2O Binary System
91(2)
2.2.1.3 The H2SO4 -NH3 -H20 Ternary System
93(1)
2.2.1.4 The Role of Amines
93(1)
2.2.1.5 The Ion-Induced Nucleation
94(1)
2.2.2 The Growth of New Particles
95(1)
2.2.2.1 The Condensation Process
95(2)
2.3 Observation and Detection Tools
97(7)
2.3.1 Detection Tools
98(2)
2.3.1.1 Physical Characterization
98(1)
2.3.1.2 Chemical Characterization
99(1)
2.3.2 Metrics for Characterizing New Particle Formation Events
100(2)
2.3.3 Occurrence of New Particle Formation Events in the Troposphere
102(2)
2.3.3.1 Pristine and Polluted Continental Boundary Layer
102(1)
2.3.3.2 Coastal and Marine Boundary Layer Sites
103(1)
2.3.3.3 High-Altitude Environments and Free Troposphere
103(1)
2.4 Precursor Candidates for Nucleation and Early Growth from Observations
104(1)
2.4.1 Continental Planetary Boundary Layer
104(1)
2.4.2 Marine Planetary Boundary Layer
104(1)
2.5 Parameterizations and Chamber Experiments
105(2)
2.6 Importance of Nucleation for the Production of Aerosols and CCN at the Global Scale
107(1)
2.7 Conclusions
108(1)
Abbreviations
109(1)
List of Symbols
110(1)
References
110(5)
3 Coagulation, Condensation, Dry and Wet Deposition, and Cloud Droplet Formation in the Atmospheric Aerosol Life Cycle 115(68)
Claudio Tomasi
Angelo Lupi
3.1 Introduction
115(5)
3.2 Physical Growth Processes
120(19)
3.2.1 Brownian Coagulation
121(7)
3.2.2 Growth by Condensation of Gases onto Preexisting Particles
128(2)
3.2.3 The Kelvin Effect
130(3)
3.2.4 Hygroscopic Growth of Particles by Water Vapor Condensation
133(6)
3.3 Aerosol Removal Processes
139(22)
3.3.1 Dry Deposition of Aerosol Particles
141(3)
3.3.2 Wet Deposition of Aerosol Particles
144(17)
3.3.2.1 In-Cloud Scavenging (Rainout)
145(2)
3.3.2.2 Interstitial Aerosol Scavenging by Cloud Droplets
147(2)
3.3.2.3 Precipitation Scavenging
149(8)
3.3.2.4 Wet Deposition in Fogs
157(1)
3.3.2.5 Nucleation of Ice Particles
157(4)
3.4 Formation of Cloud Particles
161(9)
3.4.1 Water Vapor Condensation
162(1)
3.4.2 The Kohler Theory
163(6)
3.4.3 The Cloud Condensation Nuclei
169(1)
3.5 Concluding Remarks
170(5)
Abbreviations
175(1)
List of Symbols
175(5)
References
180(3)
4 Chemical Composition of Aerosols of Different Origin 183(40)
Stefania Gilardoni
Sandro Fuzzi
4.1 Introduction
183(1)
4.2 Global Distribution and Climatology of the Main Aerosol Chemical Constituents
184(12)
4.2.1 Definition of Primary and Secondary Inorganic and Organic Aerosol Compounds
184(2)
4.2.2 Aerosol Global Budgets
186(6)
4.2.2.1 Organic Aerosol
186(1)
4.2.2.2 Black Carbon Aerosol
187(1)
4.2.2.3 Sulfur Aerosol
188(1)
4.2.2.4 Nitrogen Aerosol Species
189(2)
4.2.2.5 Dust Aerosol
191(1)
4.2.3 Main Regional Differences and Seasonal Variations of Aerosol Chemical Composition
192(4)
4.2.3.1 Urban Aerosol
192(1)
4.2.3.2 Rural Aerosol
193(1)
4.2.3.3 Continental Regional Background Aerosol
194(1)
4.2.3.4 Marine Background Aerosol
195(1)
4.3 Size Distributions of Aerosol Chemical Compounds
196(9)
4.3.1 Aerosol Size-Resolved Chemical Composition in Polluted Areas
196(4)
4.3.1.1 Secondary Inorganic Aerosol (Ammonium Sulfate and Nitrate)
197(1)
4.3.1.2 Organic Aerosol
197(1)
4.3.1.3 Black Carbon
198(2)
4.3.1.4 Dust
200(1)
4.3.2 Aerosol Size-Resolved Chemical Composition in Unperturbed Environments
200(3)
4.3.2.1 Rain Forest
200(1)
4.3.2.2 High Altitude Mountain Regions
200(2)
4.3.2.3 Polar Regions
202(1)
4.3.3 Long-Term Changes of Aerosol Chemical Components
203(2)
4.4 Issues Related to Aerosol Chemical Composition
205(11)
4.4.1 Characterization of the Aerosol Carbonaceous Fraction
205(4)
4.4.1.1 Soot: BC or EC
205(2)
4.4.1.2 Organic Aerosol
207(2)
4.4.2 Sources of BC and OA
209(4)
4.4.2.1 Black Carbon
209(2)
4.4.2.2 Organic Aerosol
211(2)
4.4.3 Effect of Organic and Inorganic Chemical Composition on Aerosol Activity as Cloud Condensation Nuclei and Ice Nuclei
213(36)
4.4.3.1 Cloud Condensation Nuclei
213(1)
4.4.3.2 Ice Nuclei
214(2)
Abbreviations
216(1)
List of Symbols
217(1)
References
218(5)
5 Aerosol Optics 223(24)
Alexander A. Kokhanovsky
5.1 Introduction
223(1)
5.2 Absorption
224(5)
5.3 Scattering
229(5)
5.4 Polarization
234(3)
5.5 Extinction
237(2)
5.6 Radiative Transfer
239(3)
5.7 Image Transfer
242(2)
Abbreviations
244(1)
List of Symbols
244(1)
References
245(2)
6 Aerosol Models 247(94)
Claudio Tomasi
Mauro Mazzola
Christian Lanconelli
Angelo Lupi
6.1 Introduction
247(2)
6.2 Modeling of the Optical and Microphysical Characteristics of Atmospheric Aerosol
249(57)
6.2.1 The 6S Code Aerosol Extinction Models
254(8)
6.2.1.1 The Four 6S Basic Aerosol Components
254(4)
6.2.1.2 The Three 6S Aerosol Models
258(4)
6.2.2 The 6S Additional Aerosol Models
262(9)
6.2.3 The 6S Modified (M-Type) Aerosol Models
271(6)
6.2.4 The OPAC Aerosol Models
277(11)
6.2.5 The Aerosol Models of Shettle and Fenn (1979)
288(7)
6.2.6 The Seven Additional Aerosol Models of Tomasi et al. (2013)
295(9)
6.2.7 The Polar Aerosol Models
304(2)
6.3 General Remarks on the Aerosol Particle Number, Surface, and Volume Size-Distribution Functions
306(11)
6.3.1 The Aerosol Particle Number Size-Distribution Function
310(4)
6.3.2 The Aerosol Surface, Volume, and Mass Size Distributions
314(3)
6.4 Size-Distribution Characteristics of Various Aerosol Types
317(15)
6.4.1 Remote Continental Aerosols
317(2)
6.4.2 Free Tropospheric Aerosols
319(1)
6.4.3 Rural-Continental Aerosols
319(3)
6.4.4 Continental-Polluted Aerosols
322(1)
6.4.5 Maritime Clean Aerosols
322(2)
6.4.6 Maritime-Polluted Aerosols
324(1)
6.4.7 Desert Dust
324(2)
6.4.8 Biomass Burning Aerosols
326(1)
6.4.9 Urban Aerosols
326(2)
6.4.10 Polar Arctic Aerosols
328(1)
6.4.11 Polar Antarctic Aerosols
329(2)
6.4.12 Stratospheric Volcanic Aerosols
331(1)
6.5 Concluding Remarks
332(1)
Abbreviations
333(1)
List of Symbols
334(3)
References
337(4)
7 Remote Sensing of Atmospheric Aerosol 341(96)
Alexander A. Kokhanovsky
Claudio Tomasi
Boyan H. Petkov
Christian Lanconelli
Maurizio Busetto
Mauro Mazzola
Angelo Lupi
Kwon H. Lee
7.1 Introduction
341(1)
7.2 Ground-Based Aerosol Remote Sensing Measurements
342(38)
7.2.1 The Multispectral Sun-Photometry Method
345(28)
7.2.1.1 Calibration of a Sun Photometer Using the Langley Plot Method
346(2)
7.2.1.2 Determination of Aerosol Optical Thickness
348(12)
7.2.1.3 Determination of Aerosol Optical Parameters from Sun-Photometer Measurements
360(10)
7.2.1.4 Relationship between the Fine Particle Fraction and Angstrom Wavelength Exponent
370(3)
7.2.2 Measurements of Volume Extinction, Scattering, and Absorption Coefficients at Ground Level Using Nephelometer and PSAP Techniques
373(2)
7.2.3 Vertical Profiles of Backscatter and Extinction Coefficients from LIDAR Measurements
375(3)
7.2.4 Measurements of the Aerosol Size Distribution Using an Optical Particle Counter
378(2)
7.3 Airborne Remote Sensing Measurements of Aerosol Optical Properties
380(23)
7.3.1 Main Results Derived from the Second Airborne Arctic Stratospheric Expedition (AASE-II) Measurements
385(1)
7.3.2 Airborne Remote Sensing Measurements during the Army LIDAR Verification Experiment (ALIVE)
386(1)
7.3.3 Airborne Measurements Performed during the Sulfate Clouds and Radiation-Atlantic (SCAR-A) Experiment
386(1)
7.3.4 Airborne Measurements Conducted during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX)
387(1)
7.3.5 The Aerosol Characterization Experiment 2 (ACE-2) Airborne Remote Sensing Measurements
388(3)
7.3.6 Airborne Remote Sensing Measurements during the Puerto Rico Dust Experiment (PRIDE)
391(1)
7.3.7 The ARCTAS/ARCPAC Airborne Remote Sensing Measurements in the Western Arctic
392(7)
7.3.8 The Airborne Measurements Conducted during the Pan-Arctic Measurements and Arctic Regional Climate Model Intercomparison Project (PAM-ARCMIP)
399(4)
7.4 Satellite-Borne Aerosol Remote Sensing Measurements
403(19)
7.4.1 Satellite Instrumentation
403(8)
7.4.2 Methods
411(4)
7.4.2.1 The Algorithms Based on the Single-View Spectral Observations
411(1)
7.4.2.2 Double-View Spectral Observations
412(1)
7.4.2.3 Multiview Spectral Observations
413(1)
7.4.2.4 Multiview Spectral and Polarimetric Observations
413(1)
7.4.2.5 Retrievals over Ocean Using Multiangle Polarimetric Observations
414(1)
7.4.2.6 Retrievals over Land
414(1)
7.4.2.7 Aerosol Retrieval Using an Artificial Neural Network Technique
414(1)
7.4.3 Examples of Aerosol Retrievals
415(24)
7.4.3.1 Global View of Aerosol Distribution from Passive Sensor
415(1)
7.4.3.2 Aerosol Retrieval from Different Sensors and Retrieval Algorithms
416(3)
7.4.3.3 Time-Resolved Observation from Geostationary Platform
419(2)
7.4.3.4 Atmospheric Anatomy from the Active Sensing Platform
421(1)
Abbreviations
422(1)
List of Symbols
423(4)
References
427(10)
8 Aerosol and Climate Change: Direct and Indirect Aerosol Effects on Climate 437(116)
Claudio Tomasi
Christian Lanconelli
Mauro Mazzola
Angelo Lupi
8.1 Introduction
437(2)
8.2 The Instantaneous DARF Effects at the ToA and BoA Levels and in the Atmosphere
439(37)
8.2.1 The Spectral Characteristics of Solar Radiation
439(4)
8.2.2 Vertical Features of Aerosol Volume Extinction Coefficient
443(1)
8.2.3 Aerosol Extinction Models and Optical Characteristics
444(3)
8.2.4 Modeling the Underlying Surface Reflectance Characteristics
447(12)
8.2.5 Calculations of Instantaneous DARF Terms at the ToA and BoA Levels and within the Atmosphere
459(4)
8.2.6 Dependence Features of Instantaneous DARF Terms on Aerosol Optical Parameters and Surface Reflectance
463(13)
8.2.6.1 Dependence of Instantaneous DARF on Aerosol Optical Thickness
464(3)
8.2.6.2 Dependence of Instantaneous DARF on Aerosol Single Scattering Albedo
467(4)
8.2.6.3 Dependence of Instantaneous DARF on Underlying Surface Albedo
471(3)
8.2.6.4 Dependence of Instantaneous DARF on Solar Zenith Angle
474(2)
8.3 The Diurnally Average DARF Induced by Various Aerosol Types over Ocean and Land Surfaces
476(49)
8.3.1 Description of the Calculation Method Based on the Field Measurements of Aerosol Optical Parameters
478(20)
8.3.2 Calculations of the Diurnally Average DARF Terms and Efficiency Parameters for Eleven Aerosol Types
498(55)
8.3.2.1 Remote Continental Aerosols
498(2)
8.3.2.2 Rural-Continental Aerosols
500(2)
8.3.2.3 Free Tropospheric Aerosols
502(2)
8.3.2.4 Continental-Polluted Aerosols
504(2)
8.3.2.5 Maritime Clean Aerosols
506(2)
8.3.2.6 Maritime-Continental Aerosols
508(4)
8.3.2.7 Desert Dust
512(4)
8.3.2.8 Biomass Burning Aerosols
516(3)
8.3.2.9 Urban and Industrial Aerosols
519(3)
8.3.2.10 Polar Aerosols
522(3)
8.3.2.11 Stratospheric Volcanic Aerosols
525(1)
8.4 Variations of DARF Efficiency as a Function of Aerosol Single Scattering Albedo
525(4)
8.5 Concluding Remarks on the DARF Effects over the Global Scale
529(2)
8.6 On the Indirect Aerosol Effects Acting in the Earth's Climate System
531(6)
Abbreviations
537(1)
List of Symbols
538(3)
References
541(12)
9 Aerosol and Air Quality 553(44)
Sandro Fuzzi
Stefanie Gilardoni
Alexander A. Kokhanovsky
Walter Di Nicolantonio
Sonoyo Mukai
Itaru Sano
Makiko Nakata
Claudio Tomasi
Christian Lanconelli
9.1 Introduction
553(7)
9.1.1 Aerosol Air Pollution
553(1)
9.1.2 Aerosol Sources and Size Distribution in Relation to Human Health Effects
553(2)
9.1.3 Aerosol Chemical Composition and Health Effects
555(2)
9.1.4 Atmospheric Aerosols, Air Pollution, and Climate Change
557(1)
9.1.5 Aerosol Load in Different Areas of the World
558(2)
9.2 Aerosol Load as Derived from Satellite-Based Measurements
560(17)
9.2.1 VIS/NIR/SWIR Multispectral Satellite Observations for Evaluating PM Concentrations: An Example over the Northern Italy Area
560(9)
9.2.1.1 MODIS-Based PM Concentration Estimates at the Surface
561(2)
9.2.1.2 Data Set and Results
563(3)
9.2.1.3 Satellite PM Multiannual Monitoring: Looking for Compliance to European Air Quality Directive -
566(3)
9.2.2 PM Estimations over Osaka (Japan) Based on Satellite Observations
569(8)
9.2.2.1 Introduction
569(2)
9.2.2.2 Aerosol Remote Sensing
571(3)
9.2.2.3 Estimation of PM from Satellite-Based AOT
574(3)
9.3 Characterization of Mass Concentration and Optical Properties of Desert Dust in Different Areas of the Earth
577(12)
9.3.1 Dust Storms in the Southwestern United States
578(1)
9.3.2 Saharan Dust Transport over the Southeastern United States and the Caribbean Region
579(1)
9.3.3 Saharan Dust Transport over the Tropical Atlantic Ocean and the Western Coast of Africa
580(1)
9.3.4 Saharan Dust Transport Toward Southern Europe
581(3)
9.3.5 Saharan Dust Transport Toward the Middle Eastern and the Persian Gulf
584(1)
9.3.6 Asian Dust Transport Over Central Asia and China
584(4)
9.3.7 Asian Dust Transport Over Korea and Japan
588(1)
9.3.8 Desert Dust Transport Over Oceanic Areas
589(1)
Abbreviations
589(1)
List of Symbols
590(1)
References
591(6)
10 Impact of the Airborne Particulate Matter on the Human Health 597(48)
Marina Camatini
Maurizio Gualtieri
Giulio Sancini
10.1 Introduction
597(3)
10.2 Epidemiological Evidences
600(9)
10.2.1 Exacerbation of Lung Diseases
602(1)
10.2.2 Effects on the Cardiovascular System
603(3)
10.2.3 Life Expectancy and PM Concentration
606(3)
10.3 Toxicological Evidences
609(21)
10.3.1 Particle Dosimetry, Particle Deposition, and Real Exposure
609(3)
10.3.2 In Vivo Evidences
612(10)
10.3.2.1 Lung Inflammation
613(2)
10.3.2.2 Cardiovascular Damages
615(3)
10.3.2.3 Brain and Other Target Organs
618(4)
10.3.3 In Vitro Evidences
622(8)
10.3.3.1 Inflammatory Response
622(2)
10.3.3.2 Oxidative Stress
624(2)
10.3.3.3 DNA Damage
626(1)
10.3.3.4 Cell Death
627(3)
10.4 Mechanism of Effects
630(7)
10.4.1 The Inflammatory Paradigm
630(2)
10.4.2 The Reactive Oxygen Species
632(2)
10.4.3 Translocation of Particles: If Yes Then Where
634(2)
10.4.4 Dimension versus Composition: Two Heads of the "PM Hydra"
636(1)
10.5 Conclusions
637(1)
Abbreviations
638(1)
List of Symbols
639(1)
References
639(6)
11 Aerosol Impact on Cultural Heritage: Deterioration Processes and Strategies for Preventive Conservation 645(26)
Alessandra Bonazza
Paola De Nuntiis
Paolo Mandrioli
Cristina Sabbioni
11.1 Introduction
645(1)
11.2 Monitoring for Cultural Heritage Conservation
645(7)
11.3 Damage and Black Crusts Formation on Building Materials
652(7)
11.3.1 Damage to Carbonate Stone
653(2)
11.3.2 Damage to Silicate Stone
655(1)
11.3.3 Anthropogenic Aerosol in Crusts
656(1)
11.3.4 Organic and Elemental Carbon
657(1)
11.3.5 Damage to Coastal Areas
658(1)
11.4 Bioaerosol Effects on Cultural Heritage
659(5)
11.5 Guidelines for the Preventive Conservation of Cultural Heritage in Urban Areas
664(1)
Abbreviations
665(1)
List of Symbols
665(1)
References
666(5)
Index 671
Claudio Tomasi graduated at the Department of Physics of the University of Bologna, Italy. He worked as researcher at the National Council of Research CNR and became director of research in 1991. After his retirement, he still continues his research activity as Associate Researcher at the Institute for Atmospheric Sciences and Climate, ISAC-CNR. He was P. I. from 2005 to 2009 of the national project QUITSAT supported by the Italian Space Agency to evaluate the air quality parameters on the Po Valley area from polar and geostationary satellite-borne observations integrated with ground-based remote sensing and in situ sampling measurements and with Chemical-Transport-Meteorological model simulations of the PM and gaseous concentrations at the surface. Since 2007, he is leader of the international research project POLAR-AOD, dedicated to study the radiative parameters of polar aerosols and their direct radiative forcing effects.

Sandro Fuzzi is Professor of Global Change at the University of Bologna and holds a doctoral degree in Physical Chemistry from the University of Bologna, Italy. He is at present Research Director at the Institute of Atmospheric Sciences and Climate of the National Research Council, CNR. His main research interests are the physical and chemical processes involving atmospheric aerosols and clouds and their effects on atmospheric composition change, climate, ecosystems and human health. Is has been a member of several international Committees and Panels including the Science Panel of the European Commission on Atmospheric Composition Change and the Chairmanship of the International Global Atmospheric Chemistry Project of the International Global Geosphere-Biosphere program. He has coordinated several national and international programs in the field of atmospheric composition change.

Alexander A. Kokhanovsky graduated from the Physical Department of the Belarusian State University, Minsk, Belarus. Alexander Kokhanovsky is a member the SCIAMACHY/ENVISAT algorithm development team at the Institute of Environmental Physics at the University of Bremen. His research interests are directed towards modeling light propagation and scattering in the terrestrial atmosphere. He has published more than 160 papers in the field of environmental optics, radiative transfer, and light scattering.