Atjaunināt sīkdatņu piekrišanu

Atmospheric Circulation Dynamics and General Circulation Models 2nd ed. 2014 [Hardback]

  • Formāts: Hardback, 730 pages, height x width: 240x168 mm, 8 Illustrations, color; XXVIII, 730 p. 8 illus. in color., 1 Hardback
  • Sērija : Environmental Sciences
  • Izdošanas datums: 19-Jul-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642135730
  • ISBN-13: 9783642135736
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 198,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 233,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 730 pages, height x width: 240x168 mm, 8 Illustrations, color; XXVIII, 730 p. 8 illus. in color., 1 Hardback
  • Sērija : Environmental Sciences
  • Izdošanas datums: 19-Jul-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642135730
  • ISBN-13: 9783642135736
Citas grāmatas par šo tēmu:
General circulation models (GCMs), which define the fundamental dynamics of atmospheric circulation, are nowadays used in various fields of atmospheric science such as weather forecasting, climate predictions and environmental estimations. The Second Edition of this renowned work has been updated to include recent progress of high resolution global modeling. It also contains for the first time aspects of high-resolution global non-hydrostatic models that the author has been studying since the publication of the first edition. Some highlighted results from the Non-hydrostatic ICosahedral Atmospheric Model (NICAM) are also included. The author outlines the theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. Concentrating on the physical mechanisms responsible for the development of large-scale circulation of the atmosphere, the book offers comprehensive coverage of an important and rapidly developing technique used in the atmospheric science. Dynamic interpretations of the atmospheric structure and their aspects in the general circulation model are described step by step.

Updated and revised, this second edition outlines theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. New topics include the recent progress of high resolution global modeling, as well as aspects of high-resolution global nonhydrostatis models.
Preface to the Second Edition xv
Preface to the First Edition xvi
List of figures
xx
List of tables
xxviii
Part I Principle Ideas
1(322)
1 Basic equations
4(28)
1.1 Dry air
4(7)
1.1.1 Equation of state and thermodynamic variables
4(4)
1.1.2 Thermodynamic variables of the ideal gas
8(3)
1.2 Conservation laws and basic equations
11(9)
1.2.1 Conservation law and conservation of mass
11(2)
1.2.2 Conservation of momentum
13(2)
1.2.3 Conservation of energy
15(3)
1.2.4 Entropy balance
18(1)
1.2.5 Enthalpy balance and Bernoulli's theorem
19(1)
1.3 Angular momentum, vorticity, and divergence
20(12)
1.3.1 Conservation of angular momentum
20(2)
1.3.2 The circulation theorem
22(2)
1.3.3 Vorticity equations
24(2)
1.3.4 Potential vorticity
26(3)
1.3.5 Divergence equation
29(2)
References and suggested reading
31(1)
2 Basic balances and stability
32(23)
2.1 Hydrostatic balance
33(3)
2.2 Geostrophic balance and thermal wind balance
36(4)
2.3 Stability of hydrostatic balance
40(3)
2.4 Stability of axisymmetric flows
43(9)
2.5 Balances and stability of parallel flows on the f-plane
52(3)
References and suggested reading
54(1)
3 Approximations of equations
55(25)
3.1 Boussinesq approximation
56(3)
3.2 Quasi-geostrophic approximation
59(6)
3.2.1 Scaling
59(1)
3.2.2 Synoptic-scale quasi-geostrophic equations
60(4)
3.2.3 Planetary-scale quasi-geostrophic equations
64(1)
3.3 Primitive equations
65(11)
3.3.1 The equations in spherical coordinates
65(2)
3.3.2 Transformation of the vertical coordinate
67(3)
3.3.3 Pressure coordinates
70(1)
3.3.4 Sigma coordinates
71(2)
3.3.5 Isentropic coordinates
73(3)
3.4 Shallow-water equations
76(2)
3.5 Appendix: Derivation of a generalized pressure gradient
78(2)
References and suggested reading
79(1)
4 Waves
80(53)
4.1 Wave theory
80(4)
4.2 Sound waves
84(3)
4.3 Gravity waves
87(9)
4.3.1 Dispersion relation
87(3)
4.3.2 Gravity waves in the hydrostatic Boussinesq approximation
90(2)
4.3.3 Group velocity and phase speed
92(1)
4.3.4 The structure of gravity waves
93(3)
4.4 Inertial waves
96(1)
4.5 Inertio-gravity waves
97(10)
4.5.1 Dispersion relation
97(4)
4.5.2 Inertio-gravity waves in the hydrostatic Boussinesq approximation
101(2)
4.5.3 Group velocity and phase speed
103(1)
4.5.4 Structure of inertio-gravity waves
104(3)
4.6 Rossby waves
107(11)
4.6.1 Two-dimensional Rossby waves
108(5)
4.6.2 Rossby waves in a stratified fluid
113(3)
4.6.3 Propagation of Rossby waves
116(2)
4.7 Waves on a sphere
118(15)
4.7.1 Shallow-water equations and the equation of vertical structure
118(3)
4.7.2 Spherical waves
121(6)
4.7.3 Equatorial waves
127(5)
References and suggested reading
132(1)
5 Instability
133(52)
5.1 Linear stability analysis
133(2)
5.2 Convective instability
135(10)
5.2.1 Rayleigh-Benard convection
136(6)
5.2.2 Convective instability in a rotating frame
142(3)
5.3 Inertial instability
145(1)
5.4 Barotropic instability
146(7)
5.4.1 Formulation
147(1)
5.4.2 Integral theorems
148(2)
5.4.3 Instability of the flow U = tanh y
150(1)
5.4.4 Interpretation of barotropic instability
151(2)
5.5 Baroclinic instability
153(32)
5.5.1 Eady problem
154(13)
5.5.2 Charney problem
167(7)
5.5.3 Energetics
174(1)
5.5.4 Necessary condition for instability
175(7)
5.5.5 Interpretation of baroclinic instability
182(1)
References and suggested reading
183(2)
6 Forced motions
185(22)
6.1 Geostrophic adjustment
185(5)
6.2 Forced motions on the f-plane
190(5)
6.3 Axisymmetric flows
195(3)
6.4 Forced motions on the β-plane
198(1)
6.5 Forced motions on the equatorial β-plane
199(2)
6.6 Ekman transport
201(6)
References and suggested reading
206(1)
7 Eddy transport
207(29)
7.1 Transport due to finite amplitude waves
207(9)
7.1.1 Generalized Lagrangian mean
207(2)
7.1.2 Examples of finite amplitude waves
209(7)
7.2 Diffusion in the meridional section
216(5)
7.2.1 Governing equations and the Eulerian mean
216(1)
7.2.2 Tracer transport
217(4)
7.3 Residual circulation
221(3)
7.4 Transformed Eulerian mean equations
224(6)
7.4.1 Generalized transformed Eulerian mean equations
224(3)
7.4.2 Quasi-geostrophic TEM equations
227(3)
7.5 Eulerian mean equations in isentropic coordinates
230(3)
7.6 Appendix: Derivation of the generalized Eliassen-Palm relation
233(3)
References and suggested reading
235(1)
8 Thermodynamics of moist air
236(26)
8.1 Formulation
236(16)
8.1.1 Definition of moist air
236(1)
8.1.2 Basic thermodynamic equations
237(3)
8.1.3 Thermodynamic functions of a single component
240(1)
8.1.4 Mixing of ideal gases
241(3)
8.1.5 Thermodynamic variables of liquid phase
244(3)
8.1.6 Thermodynamic variables of moist air
247(2)
8.1.7 Moist adiabat
249(3)
8.2 Expressions of thermodynamic variables
252(10)
8.2.1 Constants
252(2)
8.2.2 Mass concentrations and saturation condition
254(2)
8.2.3 Thermodynamic functions
256(2)
8.2.4 Moist adiabat
258(3)
References and suggested reading
261(1)
9 Basic equations of moist air
262(14)
9.1 Conservation of mass variables
262(3)
9.2 Rain process
265(2)
9.3 Conservation of momentum
267(1)
9.4 Conservation of energy and entropy
268(2)
9.5 Transport process
270(2)
9.6 Approximate equations of moist air
272(4)
References and suggested reading
274(2)
10 Radiation process
276(17)
10.1 Blackbody radiation
276(2)
10.2 Solar radiation and planetary radiation
278(1)
10.3 Absorption bands
278(2)
10.4 Radiative transfer equation
280(3)
10.5 Infrared radiation in a plane-parallel atmosphere
283(3)
10.6 Gray radiation
286(2)
10.7 Radiative transfer equation of solar radiation
288(5)
References and suggested reading
292(1)
11 Turbulence
293(30)
11.1 Similarity theory
293(9)
11.1.1 Three-dimensional turbulence
293(2)
11.1.2 Two-dimensional turbulence
295(4)
11.1.3 Tracer spectrum
299(3)
11.2 Turbulence models
302(8)
11.2.1 Basic equations
302(2)
11.2.2 Eddy diffusion coefficients and turbulence models
304(3)
11.2.3 The Mellor and Yamada model
307(3)
11.3 Boundary layer
310(13)
11.3.1 Structure of the planetary boundary layer
310(1)
11.3.2 Surface layer
311(1)
11.3.3 Bulk method
312(2)
11.3.4 Boundary layer models
314(7)
References and suggested reading
321(2)
Part II Atmospheric Structures
323(193)
12 Global energy budget
326(27)
12.1 Energy budget
326(14)
12.1.1 Effective temperature and global radiative equilibrium
326(3)
12.1.2 Energy conversion
329(5)
12.1.3 Total potential energy
334(4)
12.1.4 Available potential energy
338(2)
12.2 Energy budget of a moist atmosphere
340(2)
12.3 Entropy budget and thermal efficiency
342(4)
12.4 Similarity theory of general circulation
346(7)
References and suggested reading
350(3)
13 Latitudinal energy balance
353(17)
13.1 Energy balance model
353(2)
13.2 Latitudinal distribution of radiative balance
355(4)
13.3 Latitudinal temperature difference
359(3)
13.4 Ice albedo feedback
362(4)
13.5 Water budget
366(4)
References and suggested reading
368(2)
14 Vertical structure
370(25)
14.1 Vertically one-dimensional energy balance
371(2)
14.2 Greenhouse effect
373(1)
14.3 Radiative equilibrium
374(7)
14.3.1 Gray radiative equilibrium
374(4)
14.3.2 Static stability of gray radiative equilibrium
378(1)
14.3.3 Approximations of radiative transfer
379(2)
14.4 Radiative-convective equilibrium
381(7)
14.4.1 Mixing length theory
382(3)
14.4.2 Convective adjustment
385(3)
14.5 Radiative-convective equilibrium in a moist atmosphere
388(3)
14.5.1 Energy balance
388(1)
14.5.2 Convective adjustment
389(2)
14.6 Runaway greenhouse effect
391(4)
References and suggested reading
393(2)
15 Moist convection
395(25)
15.1 Circulation structures of convection
396(5)
15.2 Static stability of a moist atmosphere
401(5)
15.2.1 Conditional instability
401(1)
15.2.2 Convective available potential energy: CAPE
402(2)
15.2.3 Saturation condition in the direction of vertical motion
404(2)
15.3 Circulation structure of moist convection
406(8)
15.3.1 Thermal structure
406(5)
15.3.2 Mass flux
411(2)
15.3.3 Implications for improved cumulus models
413(1)
15.4 Mixed layer
414(6)
References and suggested reading
418(2)
16 Low-latitude circulations
420(21)
16.1 Dynamics of Walker circulation
421(5)
16.1.1 Large-scale circulation as organized moist convection
421(3)
16.1.2 Large-scale circulation in a nonrotating frame
424(2)
16.2 Dynamics of Hadley circulation
426(15)
16.2.1 Cyclostrophic balance
427(1)
16.2.2 Large-scale circulation in a rotating system
428(6)
16.2.3 The Held and Hou model
434(5)
References and suggested reading
439(2)
17 Circulations on a sphere
441(33)
17.1 Shallow-water equations on a sphere
442(3)
17.2 The Hadley cell model
445(5)
17.3 Midlatitude circulations
450(13)
17.3.1 Momentum balance of barotropic flow
451(2)
17.3.2 Weak nonlinear theory of Rossby waves
453(2)
17.3.3 Propagation of Rossby waves: WKBJ theory
455(3)
17.3.4 Latitudinal propagation of Rossby waves
458(2)
17.3.5 Angular momentum change
460(1)
17.3.6 Barotropic instability
461(2)
17.4 Turbulence on a sphere
463(7)
17.4.1 Turbulence on a β-plane
463(4)
17.4.2 Two-dimensional turbulence on a sphere
467(3)
17.5 Appendix: Expressions of friction terms on a sphere
470(4)
References and suggested reading
472(2)
18 Midlatitude circulation
474(31)
18.1 Meridional circulation
474(14)
18.1.1 Eulerian mean circulation
474(3)
18.1.2 Angular momentum balance between the Hadley cell and the Ferrel cell
477(4)
18.1.3 Transformed Eulerian mean circulation
481(2)
18.1.4 Isentropic mean circulation
483(5)
18.2 Meridional thermal structure
488(7)
18.2.1 Stability of a zonal symmetric state
488(2)
18.2.2 Baroclinic adjustment
490(2)
18.2.3 Tropopause height
492(3)
18.3 Life cycle experiments of extratropical cyclones
495(10)
References and suggested reading
503(2)
19 Global mixing
505(11)
19.1 Potential vorticity and potential temperature
505(3)
19.2 Lagrangian circulation
508(3)
19.3 Stratosphere troposphere exchange
511(5)
References and suggested reading
514(2)
Part III General Circulation Modeling
516(187)
20 Basic equations of hydrostatic general circulation models
519(12)
20.1 Overview
519(2)
20.2 Basic equations
521(10)
20.2.1 Primitive equations
521(2)
20.2.2 Alternative forms of the equations of motion
523(1)
20.2.3 The equation for sigma velocity
524(1)
20.2.4 The thermodynamic equation
525(1)
20.2.5 Vorticity and divergence equations
526(2)
20.2.6 The moisture equation
528(1)
20.2.7 Summary of governing equations
528(1)
References and suggested reading
529(2)
21 Spectral method on a sphere
531(41)
21.1 The spectrum method
531(2)
21.2 Spectral expansion on a sphere
533(7)
21.2.1 Spherical harmonics
533(4)
21.2.2 Spectral expansion by spherical harmonics
537(1)
21.2.3 Truncation of spectral expansion
538(2)
21.3 Quadrature on a sphere
540(4)
21.3.1 Gauss-Legendre method
540(3)
21.3.2 Gauss trapezoidal quadrature
543(1)
21.4 Spectral integration method
544(9)
21.4.1 Nondivergent barotropic equation
544(2)
21.4.2 Interaction coefficients method
546(1)
21.4.3 Transform method
546(3)
21.4.4 Procedure of the transform method
549(2)
21.4.5 Grid number of pentagonal truncation
551(2)
21.4.6 Aliasing
553(1)
21.5 Conservation laws of the nondivergent barotropic equation
553(5)
21.5.1 Vorticity
554(1)
21.5.2 Angular momentum
554(2)
21.5.3 Kinetic energy
556(1)
21.5.4 Enstrophy
557(1)
21.6 Shallow-water spectral model
558(3)
21.7 Primitive equation spectral model
561(3)
21.7.1 Equations of spectral models
561(2)
21.7.2 Horizontal diffusion and conservation
563(1)
21.8 Appendix A: Associated Legendre functions
564(4)
21.9 Appendix B: Gaussian weights
568(4)
References and suggested reading
571(1)
22 Vertical discretization of hydrostatic models
572(20)
22.1 Conservation of primitive equations
572(5)
22.1.1 Conservation of mass
573(1)
22.1.2 Constraint on the vertical integral of pressure gradient
574(1)
22.1.3 Conservation of total energy
574(2)
22.1.4 Conservation of potential temperature
576(1)
22.2 Conservation of vertically discretized equations
577(12)
22.2.1 Conservation of mass
577(2)
22.2.2 Transformation to the flux form
579(2)
22.2.3 Constraint on the vertical integral of the pressure gradient
581(2)
22.2.4 Hydrostatic balance
583(5)
22.2.5 The thermodynamic equation
588(1)
22.3 Summary
589(3)
References and suggested reading
591(1)
23 Time integration methods of the spectral model
592(16)
23.1 Time integration scheme and stability
592(4)
23.1.1 Wave equation
593(2)
23.1.2 Damping equation
595(1)
23.1.3 Time filter
596(1)
23.2 The semi-implicit scheme
596(4)
23.2.1 Stability analysis
597(1)
23.2.2 The shallow-water model
598(2)
23.3 The semi-implicit method for the primitive equation model
600(8)
23.3.1 Introduction of the semi-implicit scheme
600(2)
23.3.2 Matrix expression of vertical discretization
602(2)
23.3.3 A method for solving the semi-implicit scheme
604(3)
References and suggested reading
607(1)
24 Nonhydrostatic modeling
608(28)
24.1 Introduction
608(2)
24.2 Target of this nonhydrostatic scheme
610(2)
24.3 Numerical scheme
612(11)
24.3.1 The basic equations
612(1)
24.3.2 The pressure equation
613(1)
24.3.3 Time discretization
614(4)
24.3.4 Stability analysis of the implicit scheme
618(3)
24.3.5 Terrain-following coordinate
621(2)
24.4 Energy budget
623(3)
24.4.1 Transformation of energy
623(1)
24.4.2 Integration of total energy
624(1)
24.4.3 Integration of entropy
625(1)
24.5 Some results with the nonhydrostatic model
626(10)
24.5.1 Model
626(1)
24.5.2 One-dimensional vertical propagation of sound waves
627(1)
24.5.3 Horizontal propagation of gravity waves
627(3)
24.5.4 Topographic waves
630(1)
24.5.5 Cold-bubble simulation
631(2)
References and suggested reading
633(3)
25 Icosahedral grids
636(25)
25.1 Introduction
637(3)
25.2 Icosahedral grids
640(3)
25.3 Numerical discretization
643(1)
25.4 Grid modification
644(6)
25.5 Spherical shallow-water model
650(1)
25.6 Numerical results
651(10)
25.6.1 Test case 2: global steady state nonlinear zonal geostrophic flow
652(2)
25.6.2 Test case 5: zonal flow over an isolated mountain
654(2)
References and suggested reading
656(5)
26 Global nonhydrostatic models
661(28)
26.1 Introduction
662(2)
26.2 The basic equations
664(7)
26.2.1 Operator notation
664(2)
26.2.2 Continuity equations
666(1)
26.2.3 Momentum equation
667(1)
26.2.4 Energy equation
668(2)
26.2.5 The conservation of total energy
670(1)
26.2.6 Summary of the governing equations
671(1)
26.3 Governing equations
671(3)
26.4 Numerical methods
674(6)
26.4.1 Overview of numerical methods
674(2)
26.4.2 Icosahedral discretization
676(1)
26.4.3 Time integration scheme
676(3)
26.4.4 Numerical filters
679(1)
26.4.5 Consistency with continuity
680(1)
26.5 Numerical results
680(9)
References and suggested reading
683(6)
27 Standard experiments of atmospheric general circulation models
689(14)
27.1 Life cycle of extratropical cyclones experiment
690(3)
27.2 Held and Suarez experiment
693(4)
27.3 Aquaplanet experiment
697(3)
27.4 Atmospheric Model Intercomparison Project (AMIP)
700(3)
References and suggested reading
701(2)
Appendix A1 Transformation of coordinates
703(16)
A1.1 General transformation formulas
703(3)
A1.2 Transformation of orthogonal coordinates
706(4)
A1.3 Basic equations in orthogonal coordinates
710(1)
A1.4 Cylindrical coordinates
711(3)
A1.5 Spherical coordinates
714(5)
References and suggested reading
718(1)
Appendix A2 Physical constants
719(2)
Appendix A3 Meridional structure
721(5)
Index 726
1 Super-Resolution in Ultrasonic NDE
1(8)
Shanglei Li
Anish Poudel
Tsuchin Philip Chu
2 Nanoparticle and Collagen Concentration Measurements Using Scanned Laser Pico-projection
9(4)
Chin-Ho Chuang
Ti-Wen Sung
Chih-Ling Huang
Yu-Lung Lo
3 High-speed Shape Measurement with 4 kHz Using Linear LED Device
13(8)
Motoharu Fujigaki
Yohei Oura
Daisuke Asai
Yorinobu Murata
4 Deconvolving Strain Maps Obtained with the Grid Method
21(6)
M. Grediac
F. Sur
C. Badulescu
J.-D. Mathias
5 Advanced Test Simulator to Reproduce Experiments at Small and Large Deformations
27(8)
Marco Rossi
Michele Badaloni
Pascal Lava
Dimitri Debruyne
Gianluca Chiappini
Marco Sasso
6 The Eigenfunction Virtual Fields Method
35(8)
Sankara J. Subramanian
7 The Kinematics and Dynamics of 3-D Displacement Fields
43(26)
C.A. Sciammarella
L. Lamberti
F.M. Sciammarella
A. Boccaccio
8 Shape Measurement Using a New 3D-DIC Algorithm That Preserves Sharp Edges
69(8)
Jacques Harvent
Benjamin Coudrin
Ludovic Brethes
Jean-Jose Orteu
Michel Devy
9 Three-dimensional Underwater Measuring by Structured Light Projection
77(8)
R. Rodriguez-Vera
J.E. Pinto-Preciado
Daniel D. Aguayo
J.A. Rayas
10 Implementation and Evaluation of Single Frame Recording Techniques for Holographic Measurements of the Tympanic Membrane In-Vivo
85(8)
I. Dobrev
C. Furlong
J.J. Rosowski
J.T. Cheng
E.J. Harrington
11 A Mechano-regulation Model to Optimize Design of Minimally Invasive Percutaneous Fixation Devices for Treatment of Fractured Vertebrae
93(6)
A. Boccaccio
D.J. Kelly
C. Pappalettere
12 The Optical Methods of Caustics and Photoelasticity: A Comparison
99(10)
E.E. Gdoutos
13 Analysis of Portevin-Le Chatelier Effect of Al-Mg Alloy by Electronic Speckle Pattern Interferometry
109(10)
Tatsuya Nakamura
Tomohiro Sasaki
Sanichiro Yoshida
14 A Method for Overlapping Two DIC Views by Using a Two-Tone Speckle Pattern
119(6)
Phillip L. Reu
15 DIC Uncertainty Estimation from Statistical Analysis of Correlation Values
125(12)
B. Wieneke
R. Prevost
16 Indicating DIC Potential Correlation Errors with Optical Modulation Transfer Function
137(8)
Chi-Hung Hwang
Wei-Chung Wang
Yung-Hsiang Chen
Te-Heng Hung
Jia-He Chen
17 SEM-DIC Based Nanoscale Thermal Deformation Studies of Heterogeneous Material
145(6)
Siming Guo
Michael Sutton
Xiaodong Li
Ning Li
Liwei Wang
18 Observation of Thermal Strain on Electronic Packages Using Digital Image Correlation
151(8)
Yasutaka Tominaga
Shuichi Arikawa
Satoru Yoneyama
Yasuhisa Fujimoto
Yohei Omoto
19 Observation of the Microstructural Evolution in a Structural Polymeric Foam Using Incremental Digital Volume Correlation
159(8)
Zhenxing Hu
Huiyang Luo
Hongbing Lu
20 Strain Measurement at Temperatures Up to 800 °C Utilizing Digital Image Correlation
167(4)
J.T. Hammer
J.D. Seidt
A. Gilat
21 Novel Thermo-Mechanical Testing Method of Nuclear Fuel Cladding at Elevated Temperature
171(8)
Luis H. Alva
Xinyu Huang
Michael Sutton
Li Ning
22 Stress Analysis of a Metal-Plate-Connection in a Beam Under 3-Point-Bending Using Digital Image Correlation
179(8)
W.A. Samad
R.E. Rowlands
23 Full-Field Displacement Measurement and Crack Mapping on Masonry Walls Using Digital Image Correlation
187(10)
Rahim Ghorbani
Fabio Matta
Michael A. Sutton
24 Damage Mechanisms of Chemically Strengthened Glass Bars Due to High-Velocity Ball Impact
197(4)
Phillip Jannotti
Ghatu Subhash
25 Stereo X-Ray System Calibration for Three-Dimensional Measurements
201(8)
Timothy J. Miller
Enrico C. Quintana
26 Performing DVC at the Voxel Scale
209(8)
F. Hild
H. Leclerc
S. Roux
27 Interior Deformation Measurements Using X-Ray Tomography and Digital Volume Correlation
217(4)
Ning Li
Michael Sutton
28 Measurement of Surface Topography of Transparent Objects by Using Digital Phase-Shifting Shadow Moire Method Without Painting
221(8)
Wei-Chung Wang
Wen-Yi Kang
29 Micro-Polarizer Array Based Instantaneous Phase-Stepping Interferometry for Observing Dynamic Phenomena
229(6)
S. Yoneyama
S. Arikawa
30 Automated Surface Profile Measurement of Printed Circuit Boards by Phase-Shifted Shadow Moire
235(6)
T.Y. Chen
J. Lin
31 Phase Retrieval and Phase Derivative Determination in Digital Holography
241(10)
C. Quan
D. Balakrishnan
W. Chen
C.J. Tay
32 Speckle Interferometry Analysis of Deformation Behavior of Crystal Grains in Polycrystal
251(8)
Ryosuke Ogasawara
Shuichi Arikawa
Satoru Yoneyama
33 Optical Interferometry for Evaluation of Adhesion Strength of Thin-Film Systems
259(8)
David Didie
Daniel Didie
Bishwas Ghimire
Konrad Kabza
Sushovit Adhikari
Sanichiro Yoshida
Chiaki Miyasaka
Ik-Keun Park
34 Low Cost Digital Shearography Prototype
267(8)
Dirk Findeis
Oliver Hobson
Jasson Gryzagoridis
35 Local Stiffness Identification of Beams Using Shearography and Inverse Methods
275(8)
F. Zastavnik
L. Pyl
J. Gu
H. Sol
M. Kersemans
W. Van Paepegem
36 Long-Term Effects of Cyclic Environmental Conditions on Paintings in Museum Exhibition by Laser Shearography
283(6)
Morteza Khaleghi
Ivo Dobrev
Ellery Harrington
Philip Klausmeyer
Matthew Cushman
Cosme Furlong
37 First Application of a New Optical Rosette for Strain Measurements
289(10)
Liang Wang
Keyu Li
Salahaddin Sanusei
38 High-Speed Shape Measurements by Fringe Projection Method: SOPRA 3D
299(6)
Chaoyang Ti
Xiaoran Chen
John Tyson
Ellery Harrington
Ivo Dobrev
Babak S. Aghazadeh
Cosme Furlong
39 High-Resolution Shape Measurements by Fringe Projection and Reflectance Transformation Imaging
305(6)
Chaoyang Ti
Philip Klausmeyer
Matthew Cushman
John Tyson
Cosme Furlong
40 Strain Measurements Using DIC, Strain Gages and Reflection Photoelasticity
311(6)
Leonardo Dantas Rodrigues
Jose Luiz de Franca Freire
Ronaldo Domingues Vieira
41 Spatial-Temporal Hybrid Retrievals of Photoelastic Phase Map
317(8)
M.J. Huang
F.Y. Lao
S.C. Liu
42 Linear Birefringence and Dichroism in Fe3O4 Magnetic Nanoparticles
325(8)
Jing-Fung Lin
Meng-Zhe Lee
43 Shape Measurement Using CAD-Based Stereo-DIC
333(6)
J.-E. Dufour
B. Beaubier
F. Hild
S. Roux
S. Leclercq
44 Image Based Local Strain Measurement of Wood
339(8)
C.S. Moilanen
P. Saarenrinne
B.A. Engberg
T. Bjorkqvist
45 Thermographic Identification of Defects in Adhesively Bonded Joints
347(6)
Rachael C. Waugh
Janice M. Dulieu-Barton
Simon Quinn
46 Mechanical Conjectures Explaining Cold Nuclear Fusion
353(16)
A. Carpinteri
O. Borla
A. Goi
A. Manuello
D. Veneziano
47 Strain Decoupling for the Real Time Strains Measured During Welding Process
369(10)
Liang Wang
Keyu Li
Salahaddin Sanusei
48 Thermal Output Observations from Fe-Ni-Cr Metal Foil Strain Gages
379
T.P. Kieffer
Y. Zhu