Atjaunināt sīkdatņu piekrišanu

Atomic Spectroscopy and Radiative Processes 2nd ed. 2014 [Hardback]

  • Formāts: Hardback, 430 pages, height x width: 235x155 mm, weight: 7863 g, 79 Illustrations, black and white; XII, 430 p. 79 illus., 1 Hardback
  • Sērija : UNITEXT for Physics
  • Izdošanas datums: 10-Jul-2014
  • Izdevniecība: Springer Verlag
  • ISBN-10: 8847028078
  • ISBN-13: 9788847028074
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 430 pages, height x width: 235x155 mm, weight: 7863 g, 79 Illustrations, black and white; XII, 430 p. 79 illus., 1 Hardback
  • Sērija : UNITEXT for Physics
  • Izdošanas datums: 10-Jul-2014
  • Izdevniecība: Springer Verlag
  • ISBN-10: 8847028078
  • ISBN-13: 9788847028074
Citas grāmatas par šo tēmu:

This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications.Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

1 General Laws of the Electromagnetic Field
1(14)
1.1 Maxwell's Equations
1(1)
1.2 Energy Transported by the Electric Field
2(1)
1.3 Momentum Transported by the Electromagnetic Field
3(2)
1.4 Electromagnetic Potentials
5(1)
1.5 Gauge Invariance
6(2)
1.6 Solving Maxwell's Equations in Vacuum
8(3)
1.7 Radiation Pressure
11(1)
1.8 Sinusoidal Plane Waves
12(3)
2 Spectrum and Polarisation
15(26)
2.1 Spectrum of the Radiation
15(4)
2.2 Spectra of Some Particular Pulse Shapes
19(2)
2.3 Spectra of Stochastic and Periodic Signals
21(4)
2.4 Diffraction Grating Spectroscope
25(5)
2.5 Polarisation of a Monochromatic Wave
30(4)
2.6 Spectropolarimetric Measurements
34(4)
2.7 Properties of the Stokes Parameters
38(3)
3 Radiation from Moving Charges
41(44)
3.1 Electromagnetic Potentials Due to Charges and Currents
41(5)
3.2 The Lienard and Wiechart Potentials
46(3)
3.3 The Electromagnetic Field of a Moving Charge
49(4)
3.4 Radiation from a Moving Charge
53(5)
3.5 Thomson Scattering
58(2)
3.6 Rayleigh Scattering
60(1)
3.7 Bremsstrahlung
61(7)
3.8 Cyclotron Radiation
68(2)
3.9 Synchrotron Radiation
70(6)
3.10 Multipolar Expansion in the Radiation Zone
76(4)
3.11 Radiation Diagram for the Multipolar Components
80(5)
4 Quantisation of the Electromagnetic Field
85(14)
4.1 Harmonic Oscillator, Operators of Creation and Annihilation
85(4)
4.2 Expansion of the Electromagnetic Field in Fourier Series
89(3)
4.3 The Quantum Analog
92(4)
4.4 Intensity and Photons
96(3)
5 Relativistic Wave Equations
99(20)
5.1 The Dirac Equation for a Free Particle
99(5)
5.2 The Dirac Equation for the Electron in an Electromagnetic Field
104(2)
5.3 Nonrelativistic Limit of the Dirac Equation
106(1)
5.4 Zero Order Limit, Pauli Equation
107(3)
5.5 First Order Limit
110(2)
5.6 The Dirac Equation Describes a Particle of Spin 1/2
112(3)
5.7 Solution of the Dirac Equation in a Magnetic Field
115(4)
6 Atoms with a Single Valence Electron
119(30)
6.1 Hydrogen Atom, Bohr Theory
119(7)
6.2 Schrodinger's Equation in Spherical Coordinates
126(7)
6.3 Hydrogen Atom, Quantum Theory
133(4)
6.4 Hydrogen Atom, Relativistic Corrections
137(6)
6.5 Spectra of Alkaline Metals
143(6)
7 Atoms with Multiple Valence Electrons
149(42)
7.1 The Pauli Exclusion Principle
149(3)
7.2 The Nonrelativistic Hamiltonian: Good Quantum Numbers
152(3)
7.3 The Central Field Approximation
155(1)
7.4 The Thomas-Fermi Method
156(3)
7.5 The Variational Method and the Hartree-Fock Method
159(4)
7.6 Configurations
163(3)
7.7 The Principle of Formation of the Periodic Table
166(2)
7.8 Configurations of Excited Electrons
168(3)
7.9 A Summary of Angular Momentum Theory
171(6)
7.10 Terms Originating from Given Configurations
177(6)
7.11 The Eigenfunctions of the Non-relativistic Hamiltonian
183(3)
7.12 The Helium Atom
186(3)
7.13 The Carbon Atom
189(2)
8 Term Energies
191(16)
8.1 The Diagonal Sum Rule
191(4)
8.2 Calculation of Diagonal Matrix Elements
195(3)
8.3 Single Particle Matrix Elements
198(1)
8.4 Matrix Elements of the Coulomb Interaction
199(3)
8.5 Sums over Closed Subshells
202(2)
8.6 Terms Structure
204(3)
9 More Details on Atomic Spectra
207(30)
9.1 The Spin-Orbit Interaction
207(3)
9.2 The Wigner-Eckart Theorem and the Projection Theorem
210(3)
9.3 The Lande Interval Rule
213(5)
9.4 The j-j Coupling and the Intermediate Coupling
218(2)
9.5 The Zeeman Effect (Classical Approach)
220(2)
9.6 The Zeeman Effect (Quantum Approach)
222(5)
9.7 The Paschen-Back Effect
227(3)
9.8 Hyperfine Structure, Isotope Effect
230(3)
9.9 Hyperfine Structure, Effect Due to the Nuclear Spin
233(4)
10 Laws of Thermodynamic Equilibrium
237(24)
10.1 The Principles of Statistical Equilibrium
237(3)
10.2 Maxwell's Velocity Distribution
240(3)
10.3 The Saha-Boltzmann Equation
243(4)
10.4 The Black-Body Radiation
247(5)
10.5 Properties of the Black-Body Radiation
252(4)
10.6 The Fermi-Dirac Statistics
256(1)
10.7 The Bose-Einstein Statistics
257(4)
11 Interaction Between Matter and Radiation
261(30)
11.1 The Interaction Hamiltonian
261(1)
11.2 The Kinetic Equations
262(4)
11.3 Fermi's Golden Rule
266(2)
11.4 The Matrix Element
268(3)
11.5 Elementary Processes
271(5)
11.6 The Statistical Equilibrium Equations
276(3)
11.7 Einstein Coefficients
279(1)
11.8 The Radiative Transfer Equation
280(2)
11.9 The Absorption and Emission Coefficients
282(3)
11.10 Profile of the Emission Coefficient
285(6)
12 Selection Rules and Line Strengths
291(16)
12.1 Selection Rules for the Quantum Numbers
291(2)
12.2 Selection Rules for the Configurations
293(2)
12.3 Forbidden Transitions
295(2)
12.4 Semi-forbidden Transitions
297(1)
12.5 Forbidden Lines in Astronomical Objects
298(3)
12.6 Relative Strengths Within Multiplets in L-S Coupling
301(6)
13 Non-equilibrium Plasmas
307(8)
13.1 The Kinetic Temperature of the Electrons
307(2)
13.2 Electron-Atom Collisions
309(2)
13.3 The Einstein-Milne Relations
311(1)
13.4 The Two-Level Atom in Non-equilibrium Conditions
312(3)
14 Radiative Transfer
315(22)
14.1 Formal Solution of the Radiative Transfer Equation
315(2)
14.2 Radiative Transfer in Stellar Atmospheres
317(4)
14.3 The Grey Atmosphere
321(4)
14.4 The Hopf Equation
325(1)
14.5 Realistic Models of Stellar Atmospheres
326(2)
14.6 The Continuum Spectrum
328(4)
14.7 Spectral Lines in Local Thermodynamic Equilibrium
332(2)
14.8 Spectral Lines in Non-equilibrium Conditions
334(3)
15 Second Order Processes
337(32)
15.1 Introduction
337(4)
15.2 Thomson Scattering (Quantum Approach)
341(3)
15.3 The Rayleigh and Raman Scattering (Quantum Approach)
344(3)
15.4 Compton Scattering, Kinematic Aspects
347(1)
15.5 Compton Scattering, Dynamic Aspects
348(7)
15.6 The Klein-Nishina Equation
355(6)
15.7 The Total Cross-Section for Compton Scattering
361(1)
15.8 Polarisation Properties of Compton Scattering
362(3)
15.9 Energy Exchange Between Photons and Electrons
365(1)
15.10 The Inverse Compton Scattering
366(3)
16 Appendix
369(52)
16.1 Units of Measurement for Electromagnetic Phenomena
369(7)
16.2 Tensor Algebra
376(7)
16.3 The Dirac Delta Function
383(2)
16.4 Recovering the Elementary Laws of Electromagnetism
385(3)
16.5 The Relativistic Larmor Equation
388(3)
16.6 Gravitational Waves
391(3)
16.7 Calculation of the Thomas-Fermi Integral
394(1)
16.8 Energy of the Ground Configuration of the Silicon Atom
395(2)
16.9 Calculation of the Fine-Structure Constant of a Term
397(2)
16.10 The Fundamental Principle of Statistical Thermodynamics
399(3)
16.11 Transition Probability for the Coherences
402(3)
16.12 Sums over the Magnetic Quantum Numbers
405(3)
16.13 Calculation of a Matrix Element
408(1)
16.14 Gauge Invariance in Quantum Electrodynamics
409(2)
16.15 The Gamma Matrices and the Relativistic Invariants
411(7)
16.16 Physical Constants
418(3)
References 421(2)
Index 423