Atjaunināt sīkdatņu piekrišanu

E-grāmata: Attention in Cognitive Systems: International Workshop on Attention in Cognitive Systems, WAPCV 2008 Fira, Santorini, Greece, May 12, 2008, Revised Selected Papers

Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 5395
  • Izdošanas datums: 21-Feb-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642005824
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 5395
  • Izdošanas datums: 21-Feb-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642005824

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Attention has represented a core scienti c topic in the design of AI-enabled systems in the last few decades. Today, in the ongoing debate, design, and c- putationalmodelingofarti cialcognitivesystems,attentionhasgainedacentral position as a focus of research. For instance, attentional methods are considered in investigating the interfacing of sensory and cognitive information processing, for the organization of behaviors, and for the understanding of individual and social cognition in infant development. Whilevisualcognitionplaysacentralroleinhumanperception, ndingsfrom neuroscience and experimental psychology have provided strong evidence about the perceptionaction nature of cognition. The embodied nature of senso- motor intelligence requires a continuous and focused interplay between the c- trolofmotoractivitiesandtheinterpretationoffeedbackfromperceptualmod- ities. Decision making about the selection of information from the incoming sensory stream in tune with contextual processing on a current task and an agents global objectives becomes a further challenging issue in attentional control. Attention must operate at interfaces between a bottom-up-driven world interpretationandtop-down-driveninformationselection,thusactingatthecore of arti cial cognitive systems. These insights have already induced changes in AI-related disciplines, such as the design of behavior-based robot control and the computational modeling of animats. Today, the development of enabling technologiessuch as autonomous robotic systems,miniaturizedmobileevenwearablesensors,andambientintelligence systems involves the real-time analysis of enormous quantities of data. These data have to be processed in an intelligent way to provide on time delivery of the requiredrelevant information. Knowledge has to be applied about what needs to be attended to, and when, and what to do in a meaningful sequence, in correspondence with visual feedback.
Attention in Scene Exploration.- On the Optimality of Spatial Attention
for Object Detection.- Decoding What People See from Where They Look:
Predicting Visual Stimuli from Scanpaths.- A Novel Hierarchical Framework for
Object-Based Visual Attention.- Where Do We Grasp Objects? An Experimental
Verification of the Selective Attention for Action Model (SAAM).- Contextual
Cueing and Saliency.- Integrating Visual Context and Object Detection within
a Probabilistic Framework.- The Time Course of Attentional Guidance in
Contextual Cueing.- Conspicuity and Congruity in Change Detection.-
Spatiotemporal Saliency.- Spatiotemporal Saliency: Towards a Hierarchical
Representation of Visual Saliency.- Motion Saliency Maps from Spatiotemporal
Filtering.- Attentional Networks.- Model Based Analysis of fMRI-Data:
Applying the sSoTS Framework to the Neural Basic of Preview Search.-
Modelling the Efficiencies and Interactions of Attentional Networks.- The
JAMF Attention Modelling Framework.- Attentional Modeling.- Modeling
Attention and Perceptual Grouping to Salient Objects.- Attention Mechanisms
in the CHREST Cognitive Architecture.- Modeling the Interactions of Bottom-Up
and Top-Down Guidance in Visual Attention.- Relative Influence of Bottom-Up
and Top-Down Attention.- Towards Standardization of Evaluation Metrics and
Methods for Visual Attention Models.- Comparing Learning Attention Control in
Perceptual and Decision Space.- Automated Visual Attention Manipulation.