Atjaunināt sīkdatņu piekrišanu

E-grāmata: Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy

Edited by (Max Born Institute, Berlin, Germany), Edited by (Max Born Institute, Berlin, Germany)
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Nov-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527677672
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 154,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Nov-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527677672
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities.
With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation.
Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments.
The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.
List of Contributors XIII
1 Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy
1(16)
Marc Vrakking
1.1 Introduction
1(1)
1.2 The Emergence of Attosecond Science
2(5)
1.2.1 Attosecond Pulse Trains and Isolated Attosecond Pulses
3(1)
1.2.2 Characterization of Attosecond Laser Pulses
4(1)
1.2.3 Experimental Challenges in Attosecond Science
5(1)
1.2.4 Attosecond Science as a Driver for Technological Developments
6(1)
1.3 Applications of Attosecond Laser Pulses
7(2)
1.4 Ultrafast Science Using XUV/X-ray Free Electron Lasers
9(2)
1.5 The Interplay between Experiment and Theory
11(1)
1.6 Conclusion and Outlook
12(1)
References
13(4)
Part One Laser Techniques 17(160)
2 Ultrafast Laser Oscillators and Amplifiers
19(18)
Uwe Morgner
2.1 Introduction
19(1)
2.2 Mode-Locking and Few-Cycle Pulse Generation
20(3)
2.3 High-Energy Oscillators
23(2)
2.4 Laser Amplifiers
25(4)
References
29(8)
3 Ultrashort Pulse Characterization
37(58)
Adam S. Wyatt
3.1 Motivation: Why Ultrafast Metrology?
37(5)
3.1.1 Ultrafast Science: High-Speed Photography in the Extreme
38(4)
3.2 Formal Description of Ultrashort Pulses
42(9)
3.2.1 Sampling Theorem
45(1)
3.2.2 Chronocyclic Representation of Ultrafast Pulses
46(1)
3.2.3 Space-Time Coupling
46(3)
3.2.4 Accuracy, Precision and Consistency
49(2)
3.3 Linear Filter Analysis
51(2)
3.4 Ultrafast Metrology in the Visible to Infrared
53(20)
3.4.1 Temporal Correlations
53(2)
3.4.2 Spectrography
55(5)
3.4.3 Sonography
60(1)
3.4.4 Tomography
60(3)
3.4.5 Interferometry
63(10)
3.5 Ultrafast Metrology in the Extreme Ultraviolet
73(12)
3.5.1 Complete Characterization of Ultrashort XUV Pulses via Photoionization Spectroscopy
75(6)
3.5.2 XUV Interferometry
81(4)
3.6 Summary
85(1)
References
85(10)
4 Carrier Envelope Phase Stabilization
95(40)
Vincent Crozatier
4.1 Introduction
95(1)
4.2 CEP Fundamentals
96(3)
4.2.1 Time Domain Representation
96(1)
4.2.2 Frequency Domain Representation
97(2)
4.3 Stabilization Loop Fundamentals
99(5)
4.3.1 The Noisy Source
99(1)
4.3.2 Noise Detection
100(1)
4.3.3 Open-Loop Noise Analysis
101(1)
4.3.4 Feedback
102(1)
4.3.5 Closed-Loop Noise Analysis
103(1)
4.4 CEP in Oscillators
104(11)
4.4.1 Oscillators Peculiarities
105(2)
4.4.2 CEP Detection
107(3)
4.4.3 Actuation
110(5)
4.5 CEP in Amplifiers
115(14)
4.5.1 Amplifier Peculiarities
116(3)
4.5.2 CEP Detection
119(4)
4.5.3 Actuation
123(1)
4.5.4 Feedback Results
124(2)
4.5.5 Parametric Amplification
126(3)
4.6 Conclusion
129(1)
References
129(6)
5 Towards Tabletop X-Ray Lasers
135(42)
Philippe Zeitoun
Eduardo Oliva
Thi Thu Thuy Le
Stephane Sebban
Marta Fajardo
David Ros
Pedro Velarde
5.1 Context and Objectives
135(2)
5.2 Choice of Plasma-Based Soft X-Ray Amplifier
137(4)
5.2.1 Basic Aspects of High Harmonic Amplification
138(2)
5.2.2 Basic Aspects of Plasma Amplifiers
140(1)
5.3 2D Fluid Modeling and 3D Ray Trace
141(8)
5.3.1 ARWEN Code
142(1)
5.3.2 Model to Obtain 2D Maps of Atomic Data
143(6)
5.4 The Bloch-Maxwell Treatment
149(8)
5.5 Stretched Seed Amplification
157(13)
5.6 Conclusion
170(1)
References
171(6)
Part Two Theoretical Methods 177(144)
6 Ionization in Strong Low-Frequency Fields
179(21)
Misha Ivanov
6.1 Preliminaries
179(1)
6.2 Speculative Thoughts
179(2)
6.3 Basic Formalism
181(3)
6.3.1 Hamiltonians and Gauges
181(1)
6.3.2 Formal Solutions
182(2)
6.4 The Strong-Field Approximation
184(5)
6.4.1 The Volkov Propagator and the Classical Connection
185(1)
6.4.2 Transition Amplitudes in the SFA
186(3)
6.5 Strong-Field Ionization: Exponential vs. Power Law
189(6)
6.5.1 The Saddle Point Approximation and the Classical Connection
190(5)
6.6 Semiclassical Picture of High Harmonic Generation
195(3)
6.7 Conclusion
198(1)
References
199(1)
7 Multielectron High Harmonic Generation: Simple Man on a Complex Plane
200(57)
Olga Smirnova
Misha Ivanov
7.1 Introduction
201(2)
7.2 The Simple Man Model of High Harmonic Generation (HHG)
203(2)
7.3 Formal Approach for One-Electron Systems
205(4)
7.4 The Lewenstein Model: Saddle Point Equations for HHG
209(5)
7.5 Analysis of the Complex Trajectories
214(7)
7.6 Factorization of the HHG Dipole: Simple Man on a Complex Plane
221(6)
7.6.1 Factorization of the HHG Dipole in the Frequency Domain
222(2)
7.6.2 Factorization of the HHG Dipole in the Time Domain
224(3)
7.7 The Photoelectron Model of HHG: The Improved Simple Man
227(4)
7.8 The Multichannel Model of HHG: Tackling Multielectron Systems
231(7)
7.9 Outlook
238(3)
7.10 Appendix A: Supplementary Derivations
241(1)
7.11 Appendix B: The Saddle Point Method
242(8)
7.11.1 Integrals on the Real Axis
243(5)
7.11.2 Stationary Phase Method
248(2)
7.12 Appendix C: Treating the Cutoff Region: Regularization of Divergent Stationary Phase Solutions
250(1)
7.13 Appendix D: Finding Saddle Points for the Lewenstein Model
251(2)
References
253(4)
8 Time-Dependent Schrodinger Equation
257(36)
Armin Scrinzi
8.1 Atoms and Molecules in Laser Fields
258(1)
8.2 Solving the TDSE
259(7)
8.2.1 Discretization of the TDSE
260(3)
8.2.2 Finite Elements
263(2)
8.2.3 Scaling with Laser Parameters
265(1)
8.3 Time Propagation
266(3)
8.3.1 Runge-Kutta Methods
267(1)
8.3.2 Krylov Subspace Methods
268(1)
8.3.3 Split-Step Methods
269(1)
8.4 Absorption of Outgoing Flux
269(3)
8.4.1 Absorption for a One-Dimensional TDSE
270(2)
8.5 Observables
272(6)
8.5.1 Ionization and Excitation
272(2)
8.5.2 Harmonic Response
274(1)
8.5.3 Photoelectron Spectra
275(3)
8.6 Two-Electron Systems
278(4)
8.6.1 Very Large-Scale Grid-Based Approaches
278(1)
8.6.2 Basis and Pseudospectral Approaches
278(4)
8.7 Few-Electron Systems
282(5)
8.7.1 MCTDHF: Multiconfiguration Time-Dependent Hartree-Fock
283(2)
8.7.2 Dynamical Multielectron Effects in High Harmonic Generation
285(2)
8.8 Nuclear Motion
287(3)
References
290(3)
9 Angular Distributions in Molecular Photoionization
293(28)
Robert R. Lucchese
Danielle Dowek
9.1 Introduction
293(4)
9.2 One-Photon Photoionization in the Molecular Frame
297(5)
9.3 Methods for Computing Cross-Sections
302(2)
9.4 Post-orientation MFPADs
304(6)
9.4.1 MFPADs for Linear Molecules in the Axial Recoil Approximation
304(2)
9.4.2 MFPADs for Nonlinear Molecules in the Axial Recoil Approximation
306(2)
9.4.3 Breakdown of the Axial Recoil Approximation Due to Rotation
308(1)
9.4.4 Breakdown of the Axial Recoil Approximation Due to Vibrational Motion
309(1)
9.4.5 Electron Frame Photoelectron Angular Distributions
309(1)
9.5 MFPADs from Concurrent Orientation in Multiphoton Ionization
310(4)
9.6 Pre-orientation or Alignment, Impulsive Alignment
314(1)
9.7 Conclusions
315(1)
References
315(6)
Part Three High Harmonic Generation and Attosecond Pulses 321(142)
10 High-Order Harmonic Generation and Attosecond Light Pulses: An Introduction
323(16)
Anne L'Huillier
10.1 Early Work, 1987-1993
323(2)
10.2 Three-Step Model, 1993-1994
325(3)
10.3 Trajectories and Phase Matching, 1995-2000
328(3)
10.4 Attosecond Pulses 2001
331(1)
10.5 Conclusion
332(3)
References
335(4)
11 Strong-Field Interactions at Long Wavelengths
339(22)
Manuel Kremer
Cosmin I. Blaga
Anthony D. DiChiara
Stephen B. Schoun
Pierre Agostini
Louis F. DiMauro
11.1 Theoretical Background
340(6)
11.1.1 Keldysh Picture of Ionization in Strong Fields
340(1)
11.1.2 Classical Perspectives on Postionization Dynamics
341(1)
11.1.3 High-Harmonic Generation
342(1)
11.1,4 Wavelength Scaling of High-Harmonic Cutoff and Attochirp
342(2)
11.1.5 In-situ and RABBITT Technique
344(2)
11.2 Mid-IR Sources and Beamlines at OSU
346(4)
11.2.1 2-p.m Source
346(1)
11.2.2 3.6-p.m Source
347(1)
11.2.3 OSU Attosecond Beamline
347(1)
11.3 Strong-Field Ionization: The Single-Atom Response
348(2)
11.4 High-Harmonic Generation
350(6)
11.4.1 Harmonic Cutoff and Harmonic Yield
350(2)
11.4.2 Attochirp
352(1)
11.4.3 In-situ Phase Measurement
352(3)
11.4.4 RABBITT Method
355(1)
11.5 Conclusions and Future Perspectives
356(1)
References
356(5)
12 Attosecond Dynamics in Atoms
361(34)
Giuseppe Sansone
Francesca Calegari
Matteo Lucchini
Mauro Nisoli
12.1 Introduction
361(1)
12.2 Single-Electron Atom: Hydrogen
362(3)
12.3 Two-Electron Atom: Helium
365(15)
12.3.1 Electronic Wave Packets
366(5)
12.3.2 Autoionization: Fano Profile
371(2)
12.3.3 Two-Photon Double Ionization
373(7)
12.4 Multielectron Systems
380(13)
12.4.1 Neon: Dynamics of Shake-Up States
381(3)
12.4.2 Neon: Delay in Photoemission
384(2)
12.4.3 Argon: Fano Resonance
386(2)
12.4.4 Krypton: Auger Decay
388(2)
12.4.5 Krypton: Charge Oscillation
390(1)
12.4.6 Xenon: Cascaded Auger Decay
391(2)
References
393(2)
13 Application of Attosecond Pulses to Molecules
395(26)
Franck Lepine
13.1 Attosecond Dynamics in Molecules
395(2)
13.2 State-of-the-Art Experiments Using Attosecond Pulses
397(8)
13.2.1 Ion Spectroscopy
398(4)
13.2.2 Electron Spectroscopy
402(2)
13.2.3 Photo Absorption
404(1)
13.3 Theoretical Work
405(8)
13.3.1 Electron Dynamics in Small Molecules
405(1)
13.3.2 Electron Dynamics in Large Molecules
406(7)
13.4 Perspectives
413(3)
13.4.1 Molecular Alignment and Orientation
413(1)
13.4.2 Electron Delocalization between DNA Group Junction
414(2)
13.4.3 Similar Dynamics in Water and Ice
416(1)
13.4.4 More
416(1)
13.5 Conclusion
416(1)
References
417(4)
14 Attosecond Nanophysics
421(42)
Frederik Submann
Sarah L. Stebbings
Sergey Zherebtsov
Soo Hoon Chew
Mark I. Stockman
Eckart Ruhl
Ulf Kleineberg
Thomas Fennel
and Matthias F. Kling
14.1 Introduction
421(4)
14.2 Attosecond Light-Field Control of Electron Emission and Acceleration from Nanoparticles
425(8)
14.2.1 Imaging of the Electron Emission from Isolated Nanoparticles
426(3)
14.2.2 Microscopic Analysis of the Electron Emission
429(4)
14.3 Few-Cycle Pump-Probe Analysis of Cluster Plasmons
433(6)
14.3.1 Basics of Spectral Interferometry
433(2)
14.3.2 Oscillator Model Results for Excitation with Gaussian Pulses
435(2)
14.3.3 Spectral Interferometry Analysis of Plasmons in Small Sodium Clusters
437(2)
14.4 Measurements of Plasmonic Fields with Attosecond Time Resolution
439(10)
14.4.1 Attosecond Nanoplasmonic Streaking
439(2)
14.4.2 The Regimes of APS Spectroscopy
441(1)
14.4.3 APS Spectroscopy of Collective Electron Dynamics in Isolated Nanoparticles
442(2)
14.4.4 Attosecond Nanoscope
444(2)
14.4.5 Experimental Implementation of the Attosecond Nanoscope
446(3)
14.5 Nanoplasmonic Field-Enhanced XUV Generation
449(5)
14.5.1 Tailoring of Nanoplasmonic Field Enhancement for HHG
450(2)
14.5.2 Generation of Single Attosecond XUV Pulses in Nano-HHG
452(2)
14.6 Conclusions and Outlook
454(1)
References
455(8)
Part Four Ultra Intense X-Ray Free Electron Laser Experiments 463(136)
15 Strong-Field Interactions at EUV and X-Ray Wavelengths
465(64)
Artem Rudenko
15.1 Introduction
465(2)
15.2 Experimental Background
467(6)
15.2.1 What Is a "Strong" Field?
467(2)
15.2.2 Basic Parameters of Intense High-Frequency Radiation Sources
469(2)
15.2.3 Detection Systems
471(2)
15.3 Atoms and Molecules under Intense EUV Light
473(20)
15.3.1 Two-Photon Single Ionization of Helium
473(3)
15.3.2 Few-Photon Double Ionization of Helium and Neon
476(9)
15.3.3 Multiple Ionization of Atoms
485(2)
15.3.4 EUV-Induced Fragmentation of Simple Molecules
487(6)
15.4 EUV Pump-EUV Probe Experiments
493(6)
15.4.1 Split-and-Delay Arrangements and Characterization of the EUV Pulses
493(2)
15.4.2 Nuclear Wave Packet Imaging in Diatomic Molecules
495(3)
15.4.3 Isomerization Dynamics of Acetylene Cations
498(1)
15.5 Experiments in the X-Ray Domain
499(11)
15.5.1 Multiple Ionization of Heavy Atoms: Role of Resonant Excitations
500(6)
15.5.2 Multiphoton Ionization of Molecules Containing High-Z Atoms
506(4)
15.6 Summary and Outlook
510(2)
References
512(17)
16 Ultraintense X-Ray Interactions at the Linac Coherent Light Source
529(28)
Linda Young
16.1 Introduction
529(7)
16.1.1 Comparison of Ultrafast, Ultraintense Optical, and X-Ray Lasers
531(2)
16.1.2 X-Ray Atom Interactions
533(3)
16.2 Atomic and Molecular Response to Ultraintense X-Ray Pulses
536(7)
16.2.1 Nonresonant High-Intensity X-Ray Phenomena
537(3)
16.2.2 Resonant High-Intensity X-Ray Phenomena
540(3)
16.3 Ultrafast X-Ray Probes of Dynamics
543(1)
16.4 Characterization of LCLS Pulses
544(2)
16.5 Outlook
546(3)
References
549(8)
17 Coherent Diffractive Imaging
557(42)
Willem Boutu
Betrand Carre
Hamed Merdji
17.1 Introduction
557(2)
17.2 Far-Field Diffraction
559(6)
17.2.1 Optical Point of View
559(2)
17.2.2 Born Approximation
561(1)
17.2.3 Resolution
562(2)
17.2.4 Comments on the Approximations
564(1)
17.3 Source Requirements
565(7)
17.3.1 Coherence
565(3)
17.3.2 Signal-to-Noise Ratio
568(1)
17.3.3 Dose
569(3)
17.3.4 Different XUV Sources Comparison
572(1)
17.4 Solving the Phase Problem
572(11)
17.4.1 Oversampling Method
572(2)
17.4.2 Basics on Iterative Phasing Algorithms
574(3)
17.4.3 Implementations of Phase Retrieval Algorithms
577(6)
17.5 Holography
583(7)
17.5.1 Fourier Transform Holography
583(4)
17.5.2 HERALDO
587(3)
17.6 Conclusions
590(2)
References
592(7)
Index 599
Thomas Schultz coordinates scientific aspects of the ATTOFEL network. He graduated from ETH Zurich. After receiving his PhD in Chemistry he became a visiting Visiting Fellow at the Femtosecond Research Program in the National Research Council Canada. Since 2003 He is a Project leader at the Max Born Institute in Berlin. His research explores the photochemical elementary reactions in biologically relevant systems through ionization spectroscopy of molecules and clusters.

Marc Vrakking is Scientific Director of the Attoscience Group at the Max Born Institute in Berlin, Germany. He graduated in Physics and received his PhD in Chemistry from the University of California Berkeley, USA. He was a Professor of Physics at the University of Nijmegen, NL, and has served as group leader in XUV Physics at AMOLF. In 2010 he joined the Max Born Institute, and has been appointed Professor of Physics at the Free University of Berlin.