Atjaunināt sīkdatņu piekrišanu

Auto-Grader - Auto-Grading Free Text Answers 1st ed. 2022 [Mīkstie vāki]

  • Formāts: Paperback / softback, 96 pages, height x width: 210x148 mm, weight: 194 g, 34 Illustrations, color; 5 Illustrations, black and white; XIII, 96 p. 39 illus., 34 illus. in color. Textbook for German language market., 1 Paperback / softback
  • Sērija : BestMasters
  • Izdošanas datums: 15-Oct-2022
  • Izdevniecība: Springer Gabler
  • ISBN-10: 3658392029
  • ISBN-13: 9783658392024
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 96 pages, height x width: 210x148 mm, weight: 194 g, 34 Illustrations, color; 5 Illustrations, black and white; XIII, 96 p. 39 illus., 34 illus. in color. Textbook for German language market., 1 Paperback / softback
  • Sērija : BestMasters
  • Izdošanas datums: 15-Oct-2022
  • Izdevniecība: Springer Gabler
  • ISBN-10: 3658392029
  • ISBN-13: 9783658392024
Citas grāmatas par šo tēmu:
Teachers spend a great amount of time grading free text answer type questions. To encounter this challenge an auto-grader system is proposed. The thesis illustrates that the auto-grader can be approached with simple, recurrent, and Transformer-based neural networks. Hereby, the Transformer-based models has the best performance. It is further demonstrated that geometric representation of question-answer pairs is a worthwhile strategy for an auto-grader. Finally, it is indicated that while the auto-grader could potentially assist teachers in saving time with grading, it is not yet on a level to fully replace teachers for this task.
Introduction.- Research design.- Research background.- Data.- Model
development.- Evaluation.- Discussion, limitations and further
research.- Conclusion.
Robin Richner was working as a Machine Learning Engineer in the edtech industry exploring ways to help teachers in their daily life. He now moved on to the web3 industry.