Atjaunināt sīkdatņu piekrišanu

Automated/Mechanized Drilling and Countersinking of Airframes [Hardback]

  • Formāts: Hardback, 262 pages, height x width: 254x178 mm
  • Izdošanas datums: 31-May-2013
  • Izdevniecība: SAE International
  • ISBN-10: 0768076463
  • ISBN-13: 9780768076462
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 162,65 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 262 pages, height x width: 254x178 mm
  • Izdošanas datums: 31-May-2013
  • Izdevniecība: SAE International
  • ISBN-10: 0768076463
  • ISBN-13: 9780768076462
Citas grāmatas par šo tēmu:
Modern aircraft manufacturing involves drilling and countersinking hundreds of thousands to millions of holes. Doing this work by hand accounts for 65% of the cost of airframe assembly, 85% of the quality issues, and 80% of the lost time due to injuries.

Automated drilling and countersinking replaces traditional hand methods and involves using numeric control machinery to drill and countersink a finished hole one shot (drilling a finished hole without using pilot holes or tool changes). This is a proven cost reducing technology that improves quality where it has been applied successfully.

The focus of this book is on automating the process of drilling and countersinking holes during airframe manufacturing. Since this is the area of greatest return on investment for airframe producers, the book provides a stepped approach for evaluating possible areas for applying automation and a detailed description of the process for choosing, acquiring, and transitioning the right machinery for success. It also provides a vision for a 10- to 15-year future state of airframe manufacture.

Readers will use the information to:

Understand the evolution of automated/mechanized drilling and countersinking airframes. Access decision models and matrices to help evaluate the feasibility of applying automation/mechanization to any airframe. Gain access to a step-by-step procedure to select the right piece of machinery. Learn the necessary processes for testing and transitioning machinery to production. Assess and acquire data to evaluate the effect of the process. Choose and train the right individuals to manage and run the machinery. Conduct cost benefit analysis models. Make recommendations for maintenance and spares. Address socio-economic factors to reconfigure a facility from hand to automated activities.



No other book provides such detailed technical, economic, and social information about automating the single largest contributor to airframe cost.
Preface xiii
Acknowledgments xv
Introduction 1(15)
End Notes 16(1)
Reference 16(1)
Chapter 1 Historical Perspective: Why Airframes Have Holes
17(20)
1.1 Introduction
17(1)
1.2 The Airframe
18(1)
1.3 Aluminum
19(1)
1.4 Rivets
20(3)
1.5 Assembly Tooling
23(1)
1.6 Titanium
24(1)
1.7 Hand Tools and Drills
25(3)
1.8 Composites
28(2)
1.9 Tooling and Composites
30(2)
1.10 On-Assembly Drilling
32(5)
References
36(1)
Chapter 2 Airframe Manufacturing Cost Drivers
37(18)
2.1 Introduction
37(1)
2.2 Why Reduce Cost?
38(3)
2.2.1 The Value Price Profitability Index Commercial
40(1)
2.3 Defining Cost
41(2)
2.4 Identifying Manufacturing-Related Costs
43(9)
2.4.1 Efficiency
44(2)
2.4.2 Effectivity
46(1)
2.4.3 Impact
47(4)
2.4.4 Cost Contributors Assessment
51(1)
2.5 Summary
52(3)
References
54(1)
Chapter 3 Incentives and Disincentives to Automate
55(18)
3.1 Introduction
55(2)
3.2 Military Automation Disincentive
57(7)
3.2.1 The Means of Production
57(2)
3.2.2 Parceled Application
59(1)
3.2.3 Specific Use
60(1)
3.2.4 Time Horizon
60(1)
3.2.5 Politics
61(1)
3.2.6 Controlled Profit
62(1)
3.2.7 Restricted Sales
62(1)
3.2.8 No Competition
63(1)
3.3 Military Producers' Incentives to Automate
64(3)
3.3.1 Affordability
64(1)
3.3.2 Enlightenment
64(1)
3.3.3 Complexity
65(1)
3.3.4 Multiyear Buys
65(1)
3.3.5 Quality
65(1)
3.3.6 Marketing
66(1)
3.3.7 Access
66(1)
3.4 Commercial Disincentives
67(2)
3.4.1 Geopolitical Local
67(1)
3.4.2 Geopolitical Global
68(1)
3.4.3 Labor
68(1)
3.5 Commercial Incentives
69(1)
3.6 Summary
70(3)
References
71(2)
Chapter 4 Types of Drill/Countersink Automation
73(18)
4.1 Introduction
73(1)
4.2 Motion
74(7)
4.2.1 Size
75(1)
4.2.2 Machine Types
76(4)
4.2.3 Tools and Parts
80(1)
4.2.4 Integration Level I
81(1)
4.3 Action
81(5)
4.3.1 End Effector
81(3)
4.3.2 Dust Collection
84(1)
4.3.3 Coolant
85(1)
4.3.4 Tool Changer
85(1)
4.3.5 Vision System
85(1)
4.3.6 Inspection
85(1)
4.3.7 Integration Level II
86(1)
4.4 Controller
86(2)
4.4.1 Human Machine Interface
86(1)
4.4.2 Volumetric Compensation Algorithm
87(1)
4.4.3 Integration Level III
87(1)
4.5 Calibration
88(1)
4.6 Sustainability
89(1)
4.7 Summary
89(2)
References
90(1)
Chapter 5 Considerations Before Replacing Hand Drilling with Mechanization or Automation
91(16)
5.1 Introduction
91(2)
5.2 Before the Decision to Automate
93(12)
5.2.1 Feasibility Analysis
93(7)
5.2.2 Cost Benefits Analysis
100(5)
5.3 "Go-Ahead" Decision Criteria
105(1)
5.4 Summary
105(2)
Chapter 6 How to Choose the Right Automation
107(12)
6.1 Introduction
107(1)
6.2 Three Don'ts
108(4)
6.2.1 Needs
109(1)
6.2.2 Affordability
110(2)
6.2.3 Complexity
112(1)
6.3 References
112(1)
6.4 Requirements Document
113(3)
6.4.1 General Information
114(1)
6.4.2 System Summary
114(1)
6.4.3 Functional Requirements
114(1)
6.4.4 User Impacts
114(1)
6.4.5 Performance Requirements
114(1)
6.4.6 Additional System Requirements
115(1)
6.4.7 Equipment and Software
115(1)
6.4.8 Security
115(1)
6.4.9 Location
115(1)
6.5 Summary
116(3)
References
117(2)
Chapter 7 Steps to Installation
119(20)
7.1 Introduction
119(1)
7.2 Mapping the Existing Process
120(5)
7.2.1 Part Placement
122(2)
7.2.2 Trim
124(1)
7.2.3 Finished Hole Size
124(1)
7.3 Mapping the New Process
125(1)
7.4 Requirements Document
126(2)
7.4.1 Identify Stakeholders and Define Stakeholder Needs
126(1)
7.4.2 Categorize System Requirements
127(1)
7.4.3 Interpret and Record Requirements
128(1)
7.4.4 Sign Off
128(1)
7.5 Platform Specification
128(1)
7.6 Request for Proposal
129(3)
7.6.1 Introduction
130(2)
7.7 Manufacturing Readiness Level Consideration
132(1)
7.8 Performance Measurement Tools
133(1)
7.9 Factory Acceptance
133(3)
7.9.1 Basic Process Control System
134(1)
7.9.2 Hazard
135(1)
7.9.3 Instruments
135(1)
7.9.4 Process Risk
135(1)
7.9.5 Safety Instrument Function
136(1)
7.10 Installation and Test
136(1)
7.11 Summary
136(3)
References
137(2)
Chapter 8 Test Procedures
139(14)
8.1 Introduction
139(1)
8.2 Unique Tests
140(10)
8.2.1 Impact Avoidance Test
141(2)
8.2.2 Aluminum Tape Ink Dot Test
143(3)
8.2.3 Compression Deflection Test
146(1)
8.2.4 Drill Routine Conformance Test
147(1)
8.2.5 Countersink Depth Test
147(1)
8.2.6 Machine Subroutines
148(1)
8.2.7 Final Full Function
149(1)
8.2.8 Demonstration
149(1)
8.3 Volatile Organic Compounds
150(1)
8.4 Summary
151(2)
References
152(1)
Chapter 9 Transition to Production
153(16)
9.1 Introduction
153(1)
9.2 TTP Document and Transfer of RAA
154(1)
9.3 TTP Technology Readiness Levels
155(1)
9.3.1 TRL4
155(1)
9.3.2 TRL5
156(1)
9.3.3 Combined TRL/MRL
156(1)
9.4 TTP Manufacturing Readiness Level
156(2)
9.4.1 MRL 4 Material Solutions Analysis, Milestone A
157(1)
9.4.2 MRL 5 Technology Development, Milestone B
157(1)
9.5 TTP and Product Delivery Team Composition and Selection
158(1)
9.6 TTP Document
159(3)
9.6.1 TTP Final Hole Count and Cost Benefits Analysis
161(1)
9.7 TTP Risk Identification and Assessment
162(4)
9.7.1 Technology and Industrial Base
163(3)
9.8 Validation of System to Production Requirements: Exit Criteria
166(1)
9.9 Summary
166(3)
References
167(2)
Chapter 10 Training
169(18)
10.1 Introduction
169(2)
10.2 Who to Train
171(13)
10.2.1 Operator
171(6)
10.2.2 Design Engineer
177(3)
10.2.3 Manufacturing Engineer
180(2)
10.2.4 Quality Assurance
182(1)
10.2.5 NC Programmers
183(1)
10.2.6 Cost Center Managers
183(1)
10.2.7 Tooling
184(1)
10.3 Summary
184(3)
References
185(2)
Chapter 11 Maintenance
187(16)
11.1 Introduction
187(1)
11.2 Complexity---New Normal
188(3)
11.3 Impact Prevention
191(1)
11.4 Predictive Maintenance
192(4)
11.4.1 Maintenance Integration
192(4)
11.5 Prognostic Health Monitoring
196(1)
11.6 Maintenance
196(2)
11.6.1 Autonomous
197(1)
11.6.2 Breakdown
198(1)
11.6.3 Improvement
198(1)
11.6.4 Periodic Maintenance
198(1)
11.6.5 Certification
198(1)
11.7 Buying Maintenance
198(1)
11.8 Troubleshooting
199(1)
11.9 Summary
200(3)
References
201(2)
Chapter 12 Social Impact of Automation
203(16)
12.1 Introduction
203(1)
12.2 Pacifying the Human Capability-Machine Experience
204(8)
12.2.1 The Social Concept of Operations
206(6)
12.2.2 Data Compilation
212(1)
12.3 Perception of Ubiquitous Automation
212(1)
12.4 Safe, Secure, and Ethical Automation
213(2)
12.4.1 Safety
213(1)
12.4.2 Security
214(1)
12.4.3 Ethical Application of Automation
214(1)
12.5 Management of Automated Systems
215(1)
12.6 Organizations
215(1)
12.7 Customers
216(1)
12.8 Summary
216(3)
12.8.1 Communication
217(1)
12.8.2 Participation
217(1)
12.8.3 Consultation
217(1)
12.8.4 Training
217(1)
12.8.5 Support
217(1)
References
218(1)
Chapter 13 Future State of Airframes and Automation Summary
219(16)
13.1 Introduction
219(1)
13.2 Economics
220(1)
13.3 Manufacturing Exodus
221(4)
13.4 Exit the Autoclave
225(2)
13.5 Automation or Labor
227(2)
13.6 Fastener Alternatives
229(1)
13.7 Summary
230(5)
References
233(2)
Appendix A Automated Machine Suppliers for D/C of Airframes 235(2)
Index 237(8)
About the Author 245