Atjaunināt sīkdatņu piekrišanu

Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 351 pages, weight: 654 g
  • Sērija : Contemporary Mathematics
  • Izdošanas datums: 30-Apr-2022
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470460254
  • ISBN-13: 9781470460259
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 141,85 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 351 pages, weight: 654 g
  • Sērija : Contemporary Mathematics
  • Izdošanas datums: 30-Apr-2022
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470460254
  • ISBN-13: 9781470460259
Citas grāmatas par šo tēmu:
Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in part to great advances in computer algebra systems and progress in finite group theory. This volume provides a concise but thorough introduction for newcomers to the area while at the same time highlighting new developments for established researchers. The volume starts with two expository articles. The first of these articles gives a historical perspective of the field with an emphasis on highly symmetric surfaces, such as Hurwitz surfaces. The second expository article focuses on the future of the field, outlining some of the more popular topics in recent years and providing 78 open research problems across all topics. The remaining articles showcase new developments in the area and have specifically been chosen to cover a variety of topics to illustrate the range of diversity within the field.
Preface ix
The engaging symmetry of Riemann surfaces: A historical perspective
1(36)
S. Allen Broughton
Gareth A. Jones
David Singerman
Future directions in automorphisms of surfaces, graphs, and other related topics
37(32)
S. Allen Broughton
Jennifer Paulhus
Aaron Wootton
Extending Harvey's surface kernel maps
69(14)
Jane Gilman
A short proof of Greenberg's Theorem
83(6)
Gareth A. Jones
Equivalence of finite group actions on Riemann surfaces and algebraic curves
89(44)
S. Allen Broughton
Planar representations of group actions on surfaces
133(28)
Sebastian Bozlee
Samuel Lippert
Aaron Wootton
Fiber product of Riemann surfaces
161(16)
Ruben A. Hidalgo
Sebastian Reyes-Carocca
Angelica Vega
One dimensional equisymmetric strata in moduli space
177(40)
S. Allen Broughton
Antonio F. Costa
Milagros Izquierdo
Arithmetic of dihedral origami
217(10)
Rachel Davis
Edray Herber Goins
Reduction of superelliptic Riemann surfaces
227(22)
Tanush Shaska
Dessins d'enfants with a given bipartite graph
249(20)
Ruben A. Hidalgo
On infinite octavalent polyhedral surfaces
269(12)
Charles Camacho
Dami Lee
Universal q-gonal tessellations and their Petrie paths
281(20)
Doha Kattan
David Singerman
On the Riemann-Hurwitz formula for regular graph coverings
301(10)
Alexander Mednykh
Cyclic and dihedral actions on Klein surfaces with 2 boundary components
311(26)
E. Bujalance
J. J. Etayo
E. Martinez
Finitely generated non-cocompact NEC groups
337
F. J. Cirre
A. J. Monerri
Aaron Wootton, University of Portland, OR

S. Allen Broughton, Rose-Hulman Institute of Technology, Terre Haute, IN.

Jennifer Paulhus, Grinnell College, IA