Atjaunināt sīkdatņu piekrišanu

Automotive Ethernet 3rd Revised edition [Hardback]

  • Formāts: Hardback, 414 pages, height x width x depth: 250x174x22 mm, weight: 930 g, Worked examples or Exercises
  • Izdošanas datums: 22-Apr-2021
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108841953
  • ISBN-13: 9781108841955
  • Hardback
  • Cena: 93,73 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 414 pages, height x width x depth: 250x174x22 mm, weight: 930 g, Worked examples or Exercises
  • Izdošanas datums: 22-Apr-2021
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108841953
  • ISBN-13: 9781108841955
Learn about the latest developments in Automotive Ethernet technology and implementation with this fully revised third edition. Including 20% new material and greater technical depth, coverage is expanded to include detailed explanations of the new PHY technologies 10BASE-T1S (including multidrop) and 2.5, 5, and 10GBASE-T1, discussion of EMC interference models, and description of the new TSN standards for automotive use. Featuring details of security concepts, an overview of power saving possibilities with Automotive Ethernet, and explanation of functional safety in the context of Automotive Ethernet. Additionally provides an overview of test strategies and main lessons learned. Industry pioneers share the technical and non-technical decisions that have led to the success of Automotive Ethernet, covering everything from electromagnetic requirements and physical layer technologies, QoS, and the use of VLANs, IP and service discovery, to network architecture and testing. The guide for engineers, technical managers and researchers designing components for in-car electronics, and those interested in the strategy of introducing a new technology.

Papildus informācija

Get up to speed with the latest developments in Automotive Ethernet technology and implementation with this fully revised third edition.
Preface to the Third Edition ix
Preface to the Second Edition xi
Preface to the First Edition xv
Abbreviations and Glossary xvii
Timeline xxxi
1 A Brief History Of Ethernet (From A Car Manufacturer's Perspective)
1(32)
1.1 From the Beginning
1(4)
1.2 The Meaning of "Ethernet"
5(15)
1.2.1 Ethernet in IEEE
5(3)
1.2.2 Ethernet in Telecommunications
8(4)
1.2.3 Ethernet in Industrial Automation
12(4)
1.2.4 Ethernet in Aviation
16(2)
1.2.5 Automotive Ethernet
18(2)
1.3 Comparison of Markets
20(3)
Notes
23(2)
References
25(8)
2 A Brief History Of In-Vehicle Networking
33(42)
2.1 The Role of In-Vehicle Networking
33(3)
2.2 Traditional In-Vehicle Networking
36(25)
2.2.1 The Early Days of In-Vehicle Networking
36(1)
2.2.2 Controller Area Network (CAN)
37(7)
2.2.3 Local Interconnect Network (LIN)
44(2)
2.2.4 Media Oriented Systems Transport (MOST)
46(5)
2.2.5 FlexRay
51(3)
2.2.6 SerDes Interfaces (Pixel Links)
54(4)
2.2.7 Consumer Links
58(1)
2.2.8 Trends and Consequences
59(2)
2.3 Responsibilities in In-Vehicle Networking
61(7)
2.3.1 Role of the Relationship between Car Manufacturer and Suppliers
62(3)
2.3.2 Role of the Relationships among Car Manufacturers
65(3)
Notes
68(2)
References
70(5)
3 A Brief History Of Automotive Ethernet
75(34)
3.1 The First Use Case: Programming and Software Updates
75(9)
3.1.1 Architectural Challenges
75(1)
3.1.2 Potential Car Interface Technologies
76(2)
3.1.3 The Solution: 100BASE-TX Ethernet
78(6)
3.2 The Second Use Case: A "Private" Application Link
84(1)
3.3 The Breakthrough: UTSP Ethernet for the Automotive Industry
85(2)
3.4 BMW Internal Acceptance of UTSP Ethernet
87(5)
3.4.1 Yet Another In-Vehicle Networking Technology
87(2)
3.4.2 A Suitable Pilot Application
89(2)
3.4.3 The Future of Automotive Ethernet at BMW
91(1)
3.5 The Industry Framework for a New Technology
92(7)
3.5.1 From a Proprietary Solution to an Open Standard
92(3)
3.5.2 Shaping the Future at IEEE
95(1)
3.5.3 Supporting Structures and Organizations
96(3)
3.6 Industry-Wide Acceptance of Ethernet
99(2)
Notes
101(3)
References
104(5)
4 The Automotive Environment
109(25)
4.1 ElectroMagnetic Compatibility (EMC)
109(10)
4.1.1 Coupling Mechanisms of Electromagnetic Interference
111(2)
4.1.2 Standards for EMC
113(1)
4.1.3 Measuring EMC
114(2)
4.1.4 Sources of (EMC) Interference
116(2)
4.1.5 Electrostatic Discharge (ESD)
118(1)
4.2 The Automotive Communication Channel in General
119(6)
4.2.1 Channel Framework
120(2)
4.2.2 Channel Parameters
122(3)
4.3 The Quality Strain
125(4)
4.3.1 Automotive Semiconductor Quality Standards
125(3)
4.3.2 The CMC (Quality) for Automotive Ethernet
128(1)
Notes
129(2)
References
131(3)
5 Automotive Physical Layer Technologies
134(93)
5.1 The Automotive Ethernet Channels
135(15)
5.1.1 The 100BASE-T 1 Channel
135(5)
5.1.2 The 1000BASE-T1 Channel
140(5)
5.1.3 The 10BASE-T1(S) Channel
145(3)
5.1.4 The MultiGBASE-T1 Channel(s) for 2.5, 5, and 10 Gbps
148(2)
5.1.5 The Faster than 10 Gbps Channel
150(1)
5.2 PHY Technologies for 100 Mbps Ethernet
150(28)
5.2.1 100BASE-T1
150(26)
5.2.2 100 Mbps over 100BASE-TX
176(1)
5.2.3 100 Mbps Ethernet over Media Independent Interface (Mil)
176(2)
5.3 PHY Technologies for 1 Gbps
178(12)
5.3.1 Technical Description of 1000BASE-T1
179(8)
5.3.2 Overview on 1000BASE-RH
187(3)
5.4 PHY Technologies for 10 Mbps Ethernet
190(18)
5.4.1 Background to 10BASE-T1S
190(1)
5.4.2 Technical Description of the 10BASE-T1S PHY
191(7)
5.4.3 10BASE-T1S Multidrop
198(10)
5.5 Technologies for 2.5, 5, and 10 Gbps
208(6)
5.5.1 Background to MultiGBASE-T1
208(2)
5.5.2 Technical Description of MultiGBASE-T1
210(4)
5.6 Technologies for Other Data Rates
214(2)
Notes
216(3)
References
219(8)
6 Automotive Ethernet And Power Supply
227(20)
6.1 The Power Supply Network
228(3)
6.2 Saving Power by Saving Weight
231(3)
6.2.1 Power over Data Line (PoDL)
232(2)
6.2.2 Data over the Power Supply Network
234(1)
6.3 Saving Power by Reducing the Electrical Power Consumption
234(8)
6.3.1 Using Energy Efficient Ethernet (EEE) in Cars
235(2)
6.3.2 Wake-up and Sleep
237(5)
Notes
242(1)
References
243(4)
7 Protocols For Automotive Ethernet
247(68)
7.1 Quality of Service (QoS), Audio Video Bridging (AVB), and Time Sensitive Networking (TSN)
247(27)
7.1.1 How Audio Video Bridging (AVB) Came to Ethernet
248(2)
7.1.2 The Audio Video Bridging (AVB) Use Cases
250(4)
7.1.3 First Generation AVB Protocols and Their Use in Automotive
254(12)
7.1.4 Time Sensitive Networking (TSN) for Safety Critical Control Data
266(8)
7.2 Switches and Virtual LANs (VLANs)
274(5)
7.2.1 Switch Robustness
275(1)
7.2.2 Virtual LANs (VLANs)
276(2)
7.2.3 Other Switch Configuration Mechanism
278(1)
7.3 The Internet Protocol (IP)
279(4)
7.3.1 Dynamic versus Static Addressing
280(2)
7.3.2 IPv4 versus IPv6
282(1)
7.3.3 Routing versus Switching
282(1)
7.4 Middleware and SOME/IP
283(9)
7.4.1 Definition of "Middleware"
283(1)
7.4.2 The History of SOME/IP
284(2)
7.4.3 SOME/IP Features
286(3)
7.4.4 Service Discovery (SD)
289(3)
7.5 Network Security
292(9)
7.5.1 Security Requirements in the Automotive Industry
293(1)
7.5.2 Overview of Attack Vectors
294(1)
7.5.3 Network Security Solutions and Mechanisms
295(6)
Notes
301(5)
References
306(9)
8 Ethernet In Automotive System Development
315(36)
8.1 A Brief Overview on the System Development Process
315(3)
8.2 Software Design
318(1)
8.3 Networking Architecture
319(14)
8.3.1 EE Architecture Related Requirements
319(4)
8.3.2 EE Architecture Related Choices
323(10)
8.4 Test and Qualification
333(6)
8.4.1 Tools
334(3)
8.4.2 Test Concepts, Test Houses, and Test Suites
337(2)
8.5 Functional Safety and Ethernet
339(4)
8.6 Lessons Learned
343(4)
Notes
347(1)
References
348(3)
9 Outlook
351(11)
Notes
357(1)
References
358(4)
Index 362
Kirsten Matheus is a communications engineer who is responsible for establishing Ethernet-based communication at BMW and within the automotive industry. She has previously worked for Volkswagen, NXP and Ericsson. In 2019 she was awarded the IEEE-SA Standards Medallion 'For vision, leadership, and contributions to developing automotive Ethernet networking.' Thomas Königseder is CTO at Technica Engineering. In 2008, he was responsible at BMW for launching the first car with an Ethernet connection.