Atjaunināt sīkdatņu piekrišanu
  • Formāts - EPUB+DRM
  • Cena: 71,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Do you need to get up to date with the world's most popular networking technology? With this resource you will discover everything you need to know about Ethernet and its implementation in the automotive industry. Enhance your technical understanding and better inform your decision-making process so that you can experience the benefits of Ethernet implementation. From new market opportunities, to lower costs, and less complex processes; this is the first book to provide a comprehensive overview of automotive Ethernet. Covering electromagnetic requirements and physical layer technologies, Quality of Service, the use of VLANs, IP, and Service Discovery, as well as network architecture and testing, this unique and comprehensive resource is a must have, whether you are a professional in the automotive industry, or an academic who needs a detailed overview of this revolutionary technology and its historical background.

Papildus informācija

Learn how automotive Ethernet is revolutionizing in-car networking from the experts at the core of its development.
Preface ix
List of abbreviations
xi
Timeline xx
1 A brief history of "Ethernet" (from a car manufacturer's perspective)
1(26)
1.1 From the beginning
1(3)
1.2 The meaning of "Ethernet"
4(23)
1.2.1 Ethernet in the IEEE
5(3)
1.2.2 Ethernet in industrial automation
8(3)
1.2.3 Ethernet in aviation
11(2)
1.2.4 Ethernet in telecommunications
13(3)
1.2.5 "Automotive Ethernet"
16(3)
Notes
19(2)
References
21(6)
2 A brief history of in-car networking
27(36)
2.1 Role of in-car networking
27(3)
2.2 Traditional in-car networking
30(21)
2.2.1 The early days of in-car networking
30(1)
2.2.2 Controller Area Network (CAN)
31(5)
2.2.3 Local Interconnect Network (LIN)
36(2)
2.2.4 Media Oriented Systems Transport (MOST)
38(4)
2.2.5 FlexRay
42(4)
2.2.6 Pixel links
46(2)
2.2.7 Consumer links
48(1)
2.2.8 Trends and consequences
49(2)
2.3 Responsibilities in in-car networking
51(12)
2.3.1 Role of the relationship between car manufacturer and suppliers
51(3)
2.3.2 Role of the relationships among car manufacturers
54(3)
Notes
57(1)
References
58(5)
3 A brief history of Automotive Ethernet
63(29)
3.1 The first use case: programming and software updates
63(8)
3.1.1 Architectural challenges
63(1)
3.1.2 Potential car interface technologies
64(2)
3.1.3 The solution: 100BASE-TX Ethernet
66(5)
3.2 The second use case: a "private" application link
71(1)
3.3 The Breakthrough: UTSP Ethernet for automotive
72(2)
3.4 BMW internal acceptance of UTSP Ethernet
74(5)
3.4.1 Yet another in-car networking technology
74(1)
3.4.2 A suitable pilot application
75(2)
3.4.3 The future of Automotive Ethernet at BMW
77(2)
3.5 The industry framework for a new technology
79(5)
3.5.1 From a proprietary solution to an open standard
79(3)
3.5.2 Shaping the future at IEEE
82(1)
3.5.3 Supportive organizations
82(2)
3.6 Industry wide acceptance of Ethernet
84(8)
Notes
86(2)
References
88(4)
4 The physical transmission
92(42)
4.1 The Physical Layer (PHY) technology
92(15)
4.1.1 100 Mbps BroadR-Reach(OABR)
92(9)
4.1.2 Other 100 Mbps solutions
101(3)
4.1.3 Technologies for higher data rates
104(3)
4.2 The automotive communication channel
107(5)
4.2.1 Channel framework for OABR
108(1)
4.2.2 OABR channel parameters
109(3)
4.3 ElectroMagnetic Compatibility (EMC)
112(10)
4.3.1 Coupling mechanisms of electromagnetic interference
113(2)
4.3.2 Standards for EMC
115(1)
4.3.3 Measuring EMC
115(4)
4.3.4 Typical EMC results for an OABR link
119(1)
4.3.5 Electrostatic Discharge (ESD)
120(2)
4.4 Other requirements
122(12)
4.4.1 The quality strain
122(4)
4.4.2 Power over Data Line (PoDL)
126(1)
4.4.3 Using Energy Efficient Ethernet (EEE) in cars
127(2)
Notes
129(1)
References
130(4)
5 Protocols for Automotive Ethernet
134(41)
5.1 Quality of Service (QoS) and Audio Video Bridging (AVB)
134(19)
5.1.1 How AVB came to Ethernet
134(2)
5.1.2 The AVB use cases
136(4)
5.1.3 The AVB protocols and their use in automotive
140(11)
5.1.4 Quality of Service (QoS) for safety critical control data
151(2)
5.2 Security and VLANs
153(2)
5.3 Using the Internet Protocol (IP)
155(4)
5.3.1 Dynamic versus static addressing
157(1)
5.3.2 IPv4 versus IPv6
158(1)
5.4 Middleware and SOME/IP
159(16)
5.4.1 Definition of "middleware"
159(1)
5.4.2 The history of SOME/IP
159(1)
5.4.3 SOME/IP features
160(3)
5.4.4 Service Discovery (SD)
163(3)
Notes
166(4)
References
170(5)
6 Ethernet in automotive system development
175(22)
6.1 A brief overview of the system development process
175(3)
6.2 The software architecture
178(1)
6.3 The Electric Electronic (EE) networking architecture
179(13)
6.3.1 EE architecture in perspective
179(3)
6.3.2 The communication network architecture
182(8)
6.3.3 The supply network
190(2)
6.4 Test and qualification
192(5)
Notes
195(1)
References
196(1)
7 Outlook
197(4)
Notes
199(1)
References
200(1)
Index 201
Kirsten Matheus is a communications engineer who is currently responsible for establishing Ethernet-based communication in the industry. She also initiated and chaired the OPEN Alliance and helped establish the IEEE 802.3 reduced twisted pair gigabit Ethernet (RTPGE, 1000BASE-T1) working group. Thomas Königseder is an electronics engineer and Group Manager for Communications Technologies at BMW. He was responsible for launching the first ever serial car with an Ethernet connection.