Atjaunināt sīkdatņu piekrišanu

E-grāmata: Automotive Ethernet

  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Jul-2017
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316873717
  • Formāts - PDF+DRM
  • Cena: 76,13 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Jul-2017
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316873717

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Learn about the latest developments in automotive Ethernet technology and implementation with this fully revised second edition. Including approximately twenty-five percent new material and greater technical detail, coverage is expanded to include: · Detailed explanations of how the 100BASE-T1 PHY and 1000 BASE-T1 PHY technologies actually work · A step-by-step description of how the 1000BASE-T1 channel was derived · A summary of the content and uses of the new TSN standards · A framework for security in Automotive Ethernet · Discussion of the interrelation between power supply and automotive Ethernet communication Industry pioneers share the technical and non-technical decisions that have led to the success of automotive Ethernet, covering everything from electromagnetic requirements and physical layer technologies, Quality of Service, the use of VLANs, IP and Service Discovery, and network architecture and testing. This is a guide for engineers, technical managers and researchers designing components for in-car electronics, and those interested in the strategy of introducing a new technology.

Papildus informācija

Get up to speed with the latest developments in automotive Ethernet technology and implementation with this fully revised second edition.
Preface to the Second Edition viii
Preface to the First Edition xi
List of Abbreviations
xiii
Timeline xxiv
1 A Brief History of "Ethernet" (from a Car Manufacturer's Perspective)
1(29)
1.1 From the Beginning
1(3)
1.2 The Meaning of "Ethernet"
4(14)
1.2.1 Ethernet in IEEE
5(3)
1.2.2 Ethernet in Industrial Automation
8(4)
1.2.3 Ethernet in Aviation
12(2)
1.2.4 Ethernet in Telecommunications
14(3)
1.2.5 "Automotive Ethernet"
17(1)
1.3 Comparison of Markets
18(12)
Notes
21(2)
References
23(7)
2 A Brief History of In-Vehicle Networking
30(39)
2.1 Role of In-Vehicle Networking
30(3)
2.2 Traditional In-Vehicle Networking
33(23)
2.2.1 The Early Days of In-Vehicle Networking
33(1)
2.2.2 Controller Area Network (CAN)
34(5)
2.2.3 Local Interconnect Network (LIN)
39(3)
2.2.4 Media Oriented Systems Transport (MOST)
42(4)
2.2.5 FlexRay
46(4)
2.2.6 Pixel Links
50(3)
2.2.7 Consumer Links
53(1)
2.2.8 Trends and Consequences
54(2)
2.3 Responsibilities in In-Vehicle Networking
56(13)
2.3.1 Role of the Relationship between Car Manufacturer and Suppliers
56(3)
2.3.2 Role of the Relationships among Car Manufacturers
59(4)
Notes
63(1)
References
64(5)
3 A Brief History of Automotive Ethernet
69(33)
3.1 The First Use Case: Programming and Software Updates
69(8)
3.1.1 Architectural Challenges
69(1)
3.1.2 Potential Car Interface Technologies
70(2)
3.1.3 The Solution: 100BASE-TX Ethernet
72(5)
3.2 The Second Use Case: A "Private" Application Link
77(2)
3.3 The Breakthrough: UTSP Ethernet for Automotive
79(1)
3.4 BMW Internal Acceptance of UTSP Ethernet
80(6)
3.4.1 Yet Another In-Vehicle Networking Technology
80(2)
3.4.2 A Suitable Pilot Application
82(2)
3.4.3 The Future of Automotive Ethernet at BMW
84(2)
3.5 The Industry Framework for a New Technology
86(6)
3.5.1 From a Proprietary Solution to an Open Standard
86(2)
3.5.2 Shaping the Future at IEEE
88(2)
3.5.3 Supportive Structures and Organizations
90(2)
3.6 Industry-Wide Acceptance of Ethernet
92(10)
Notes
94(2)
References
96(6)
4 The Physical Transmission of Automotive Ethernet
102(87)
4.1 ElectroMagnetic Compatibility (EMC)
102(13)
4.1.1 Coupling Mechanisms of Electromagnetic Interference
104(2)
4.1.2 Standards for EMC
106(1)
4.1.3 Measuring EMC
106(7)
4.1.4 Electrostatic Discharge (ESD)
113(2)
4.2 The Automotive Communication Channel
115(8)
4.2.1 Channel Framework
116(1)
4.2.2 Channel Parameters
117(2)
4.2.3 The 100BASE-T1/OABR Channel
119(1)
4.2.4 The 1000BASE-T1/RTPGE Channel
120(3)
4.3 The Physical Layer (PHY) Technologies
123(42)
4.3.1 100 Mbps Ethernet
124(27)
4.3.2 1 Gbps Ethernet
151(11)
4.3.3 Other Data Rates
162(3)
4.4 Automotive Ethernet and Power Supply
165(9)
4.4.1 Elements of the Power Supply Network
166(2)
4.4.2 The Interconnection between Power Supply and Communication Technologies
168(1)
4.4.3 Power over Data Line (PoDL)
169(1)
4.4.4 Data over the Power Supply Network
170(1)
4.4.5 Using Energy-Efficient Ethernet (EEE) in Cars
171(1)
4.4.6 Wake-Up
172(2)
4.5 The Quality Strain
174(15)
4.5.1 Automotive Semiconductor Quality Standards
175(3)
4.5.2 The CMC (Quality) for Automotive Ethernet
178(1)
Notes
179(3)
References
182(7)
5 Protocols for Automotive Ethernet
189(52)
5.1 Quality of Service (QoS), Audio Video Bridging (AVB), and Time-Sensitive Networking (TSN)
189(22)
5.1.1 How Audio Video Bridging (AVB) Came to Ethernet
190(2)
5.1.2 The Audio Video Bridging (AVB) Use Cases
192(5)
5.1.3 The AVB Protocols and Their Use in Automotive
197(10)
5.1.4 Time-Sensitive Networking (TSN) for Safety Critical Control Data
207(4)
5.2 Security and Virtual LANs (VLANs)
211(8)
5.2.1 Security in Automotive
211(4)
5.2.2 Ethernet-Specific Security Aspects
215(4)
5.3 The Internet Protocol (IP)
219(4)
5.3.1 Dynamic versus Static Addressing
221(1)
5.3.2 IPv4 versus IPv6
222(1)
5.4 Middleware and SOME/IP
223(18)
5.4.1 Definition of "Middleware"
223(1)
5.4.2 The History of SOME/IP
223(1)
5.4.3 SOME/IP Features
224(3)
5.4.4 Service Discovery (SD)
227(3)
Notes
230(4)
References
234(7)
6 Ethernet in Automotive System Development
241(23)
6.1 A Brief Overview of the System Development Process
241(3)
6.2 The Software Design
244(1)
6.3 The Networking Architecture
245(13)
6.3.1 EE Architecture in Perspective
245(3)
6.3.2 The In-Vehicle Communication Network
248(8)
6.3.3 The Supply Network
256(2)
6.4 Test and Qualification
258(6)
Notes
261(2)
References
263(1)
7 Outlook
264(7)
Notes
267(1)
References
268(3)
Index 271
Kirsten Matheus is a communications engineer who is currently responsible for establishing Ethernet-based communication at BMW and within the automotive industry. She has previously worked for Volkswagen, NXP and Ericsson. Thomas Königseder is a communications engineer who manages the team for electromagnetic compatibility at BMW. In 2008, he was responsible for launching the first car with an Ethernet connection.