Atjaunināt sīkdatņu piekrišanu

E-grāmata: Autonomous driving algorithms and Its IC Design

  • Formāts: EPUB+DRM
  • Izdošanas datums: 09-Aug-2023
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789819928972
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 09-Aug-2023
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789819928972

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

With the rapid development of artificial intelligence and the emergence of various new sensors, autonomous driving has grown in popularity in recent years. The implementation of autonomous driving requires new sources of sensory data, such as cameras, radars, and lidars, and the algorithm processing requires a high degree of parallel computing. In this regard, traditional CPUs have insufficient computing power, while DSPs are good at image processing but lack sufficient performance for deep learning. Although GPUs are good at training, they are too power-hungry, which can affect vehicle performance. Therefore, this book looks to the future, arguing that custom ASICs are bound to become mainstream. With the goal of ICs design for autonomous driving, this book discusses the theory and engineering practice of designing future-oriented autonomous driving SoC chips.

The content is divided into thirteen chapters, the first chapter mainly introduces readers to the current challenges and research directions in autonomous driving. Chapters 26 focus on algorithm design for perception and planning control. Chapters 710 address the optimization of deep learning models and the design of deep learning chips, while Chapters 11-12 cover automatic driving software architecture design. Chapter 13 discusses the 5G application on autonomous drving.





This book is suitable for all undergraduates, graduate students, and engineering technicians who are interested in autonomous driving.

Chapter 1 Autonomous Driving: The Challenges.
Chapter 2 3D Object Detection.
Chapter 3 Lane Detection.
Chapter 4 Motion Planning and Control.
Chapter 5 Positioning and Mapping.
Chapter 6 Autonomous Driving Simulator.
Chapter 7 Autonomous Driving Chip.
Chapter 8 Deep Learning Model Optimization.
Chapter 9 Deep Learning Chip Design.
Chapter 10 Autonomous Driving SoC Chip Design.
Chapter 11 Autonomous Driving Operating System.
Chapter 12 Autonomous Driving Software Architecture.
Chapter 13 V2X.



Dr. Jianfeng Ren, currently working at Google Inc., received his PhD in Electrical Engineering from the University of Texas at Dallas in 2009. Previously, he worked for Qualcomm and Huawei HiSilicon for many years, and has published more than 40 papers and more than 30 US patents. His current research focus is on computational photograph/computer vision algorithms.





Dr. Dong xia, received the PhD degree in Communication and Information System in the National University of Defense Technology.  He has long been engaged in research work in the field of artificial intelligence, chip algorithm design and automatic target recognition, and published more than 60 patents.