Introduction |
|
xxi | |
Assessment Test |
|
xxx | |
|
Chapter 1 History of Analytics and Big Data |
|
|
1 | (30) |
|
Evolution of Analytics Architecture Over the Years |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (4) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
Visualization, Predictive and Prescriptive Analytics |
|
|
9 | (1) |
|
The Big Data Reference Architecture |
|
|
10 | (6) |
|
Data Characteristics: Hot, Warm, and Cold |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
Data Lakes and Their Relevance in Analytics |
|
|
16 | (3) |
|
|
16 | (3) |
|
Building a Data Lake on AWS |
|
|
19 | (4) |
|
Step 1 Choosing the Right Storage - Amazon S3 Is the Base |
|
|
19 | (2) |
|
Step 2 Data Ingestion - Moving the Data into the Data Lake |
|
|
21 | (1) |
|
Step 3 Cleanse, Prep, and Catalog the Data |
|
|
22 | (1) |
|
Step 4 Secure the Data and Metadata |
|
|
23 | (1) |
|
Step 5 Make Data Available for Analytics |
|
|
23 | (1) |
|
Using Lake Formation to Build a Data Lake on AWS |
|
|
23 | (1) |
|
|
24 | (3) |
|
|
25 | (2) |
|
|
27 | (2) |
|
|
29 | (2) |
|
Chapter 2 Data Collection |
|
|
31 | (62) |
|
|
32 | (1) |
|
|
33 | (5) |
|
Common Use Cases for AWS IoT |
|
|
35 | (1) |
|
|
36 | (2) |
|
|
38 | (26) |
|
Amazon Kinesis Introduction |
|
|
40 | (1) |
|
Amazon Kinesis Data Streams |
|
|
40 | (14) |
|
Amazon Kinesis Data Analytics |
|
|
54 | (7) |
|
Amazon Kinesis Video Streams |
|
|
61 | (3) |
|
|
64 | (8) |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
71 | (1) |
|
Change Data Capture with Glue Bookmarks |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (2) |
|
Amazon Data Migration Service |
|
|
74 | (3) |
|
|
74 | (1) |
|
What Does AWS DMS Support? |
|
|
75 | (2) |
|
|
77 | (4) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (2) |
|
Large-Scale Data Transfer Solutions |
|
|
81 | (6) |
|
|
81 | (1) |
|
|
82 | (3) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (1) |
|
|
91 | (2) |
|
|
93 | (50) |
|
|
94 | (1) |
|
|
95 | (8) |
|
Amazon S3 Data Consistency Model |
|
|
96 | (1) |
|
|
97 | (3) |
|
Data Replication in Amazon S3 |
|
|
100 | (1) |
|
Server Access Logging in Amazon S3 |
|
|
101 | (1) |
|
Partitioning, Compression, and File Formats on S3 |
|
|
101 | (2) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (13) |
|
Amazon DynamoDB Data Types |
|
|
105 | (3) |
|
Amazon DynamoDB Core Concepts |
|
|
108 | (1) |
|
Read/Write Capacity Mode in DynamoDB |
|
|
108 | (3) |
|
DynamoDB Auto Scaling and Reserved Capacity |
|
|
111 | (1) |
|
Read Consistency and Global Tables |
|
|
111 | (2) |
|
Amazon DynamoDB: Indexing and Partitioning |
|
|
113 | (1) |
|
Amazon DynamoDB Accelerator |
|
|
114 | (1) |
|
|
115 | (1) |
|
Amazon DynamoDB Streams - Kinesis Adapter |
|
|
116 | (1) |
|
|
117 | (4) |
|
|
117 | (2) |
|
Amazon DocumentDB Overview |
|
|
119 | (1) |
|
Amazon Document DB Architecture |
|
|
120 | (1) |
|
Amazon DocumentDB Interfaces |
|
|
120 | (1) |
|
Graph Databases and Amazon Neptune |
|
|
121 | (2) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (4) |
|
Hybrid Storage Requirements |
|
|
123 | (2) |
|
|
125 | (2) |
|
|
127 | (6) |
|
|
130 | (2) |
|
Interacting with Amazon EFS |
|
|
132 | (1) |
|
Amazon EFS Security Model |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
133 | (2) |
|
Key Benefits of Amazon FSx for Lustre |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (3) |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
142 | (1) |
|
Chapter 4 Data Processing and Analysis |
|
|
143 | (100) |
|
|
144 | (1) |
|
Types of Analytical Workloads |
|
|
144 | (2) |
|
|
146 | (9) |
|
|
147 | (1) |
|
|
148 | (1) |
|
Amazon Athena Use Cases and Workloads |
|
|
149 | (1) |
|
Amazon Athena DDL, DML, and DCL |
|
|
150 | (1) |
|
|
151 | (2) |
|
Amazon Athena Federated Query |
|
|
153 | (1) |
|
Amazon Athena Custom UDFs |
|
|
154 | (1) |
|
Using Machine Learning with Amazon Athena |
|
|
154 | (1) |
|
|
155 | (33) |
|
|
156 | (1) |
|
|
157 | (1) |
|
Apache Hadoop on Amazon EMR |
|
|
158 | (8) |
|
|
166 | (1) |
|
Bootstrap Actions and Custom AMI |
|
|
167 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
Apache Hive and Apache Pig on Amazon EMR |
|
|
169 | (5) |
|
Apache Spark on Amazon EMR |
|
|
174 | (8) |
|
Apache HBase on Amazon EMR |
|
|
182 | (2) |
|
Apache Flink, Apache Mahout, and Apache MXNet |
|
|
184 | (2) |
|
Choosing the Right Analytics Tool |
|
|
186 | (2) |
|
Amazon Elasticsearch Service |
|
|
188 | (4) |
|
When to Use Elasticsearch |
|
|
188 | (1) |
|
Elasticsearch Core Concepts (the ELK Stack) |
|
|
189 | (2) |
|
Amazon Elasticsearch Service |
|
|
191 | (1) |
|
|
192 | (33) |
|
What Is Data Warehousing? |
|
|
192 | (1) |
|
|
193 | (2) |
|
|
195 | (3) |
|
|
198 | (1) |
|
|
199 | (6) |
|
Data Modeling in Redshift |
|
|
205 | (8) |
|
Data Loading and Unloading |
|
|
213 | (4) |
|
Query Optimization in Redshift |
|
|
217 | (4) |
|
|
221 | (4) |
|
|
225 | (4) |
|
|
226 | (2) |
|
What Is Kinesis Data Analytics for Java? |
|
|
228 | (1) |
|
Comparing Batch Processing Services |
|
|
229 | (1) |
|
Comparing Orchestration Options on AWS |
|
|
230 | (1) |
|
|
230 | (1) |
|
Comparing Different ETL Orchestration Options |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (3) |
|
|
235 | (2) |
|
|
237 | (6) |
|
|
237 | (1) |
|
|
238 | (2) |
|
|
240 | (1) |
|
|
241 | (1) |
|
Amazon Elasticsearch Blog |
|
|
241 | (1) |
|
Amazon Redshift References and Further Reading |
|
|
242 | (1) |
|
Chapter 5 Data Visualization |
|
|
243 | (36) |
|
|
244 | (1) |
|
|
245 | (1) |
|
Data Visualization Options |
|
|
246 | (1) |
|
|
247 | (20) |
|
|
248 | (2) |
|
|
250 | (5) |
|
|
255 | (1) |
|
|
256 | (2) |
|
|
258 | (3) |
|
Machine Learning Insights |
|
|
261 | (1) |
|
|
262 | (2) |
|
Embedding QuickSight Objects into Other Applications |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
Other Visualization Options |
|
|
267 | (3) |
|
|
270 | (3) |
|
What Is Predictive Analytics? |
|
|
270 | (1) |
|
|
271 | (2) |
|
|
273 | (1) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
275 | (1) |
|
|
276 | (1) |
|
Additional Reading Material |
|
|
276 | (3) |
|
|
279 | (60) |
|
|
280 | (1) |
|
Shared Responsibility Model |
|
|
280 | (2) |
|
|
282 | (3) |
|
|
285 | (4) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
287 | (2) |
|
|
289 | (12) |
|
|
290 | (1) |
|
|
291 | (2) |
|
|
293 | (5) |
|
|
298 | (1) |
|
|
298 | (1) |
|
Security Options during Cluster Creation |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
301 | (7) |
|
Managing Access to Data in Amazon S3 |
|
|
301 | (4) |
|
Data Protection in Amazon S3 |
|
|
305 | (1) |
|
Logging and Monitoring with Amazon S3 |
|
|
306 | (2) |
|
Best Practices for Security on Amazon S3 |
|
|
308 | (1) |
|
|
308 | (4) |
|
Managing Access to Amazon Athena |
|
|
309 | (1) |
|
Data Protection in Amazon Athena |
|
|
310 | (1) |
|
Data Encryption in Amazon Athena |
|
|
311 | (1) |
|
Amazon Athena and AWS Lake Formation |
|
|
312 | (1) |
|
|
312 | (5) |
|
Levels of Security within Amazon Redshift |
|
|
313 | (2) |
|
Data Protection in Amazon Redshift |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
317 | (1) |
|
Amazon Elasticsearch Security |
|
|
317 | (8) |
|
Elasticsearch Network Configuration |
|
|
318 | (1) |
|
|
318 | (1) |
|
Accessing Amazon Elasticsearch and Kibana |
|
|
319 | (3) |
|
Data Protection in Amazon Elasticsearch |
|
|
322 | (3) |
|
|
325 | (2) |
|
Managing Access to Amazon Kinesis |
|
|
325 | (1) |
|
Data Protection in Amazon Kinesis |
|
|
326 | (1) |
|
Amazon Kinesis Best Practices |
|
|
326 | (1) |
|
Amazon QuickSight Security |
|
|
327 | (2) |
|
Managing Data Access with Amazon QuickSight |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
329 | (5) |
|
Access Management in DynamoDB |
|
|
329 | (1) |
|
IAM Policy with Fine-Grained Access Control |
|
|
330 | (1) |
|
|
331 | (1) |
|
How to Access Amazon DynamoDB |
|
|
332 | (1) |
|
Data Protection with DynamoDB |
|
|
332 | (1) |
|
Monitoring and Logging with DynamoDB |
|
|
333 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
334 | (2) |
|
|
336 | (1) |
|
References and Further Reading |
|
|
337 | (3) |
Appendix Answers to Review Questions |
|
339 | (10) |
|
Chapter 1 History of Analytics and Big Data |
|
|
340 | (2) |
|
Chapter 2 Data Collection |
|
|
342 | (1) |
|
|
343 | (1) |
|
Chapter 4 Data Processing and Analysis |
|
|
344 | (2) |
|
Chapter 5 Data Visualization |
|
|
346 | (1) |
|
|
346 | (3) |
Index |
|
349 | |