Atjaunināt sīkdatņu piekrišanu

E-grāmata: Backward Fuzzy Rule Interpolation

  • Formāts: EPUB+DRM
  • Izdošanas datums: 12-Aug-2018
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811316548
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 12-Aug-2018
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811316548

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI). BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the parametric approach and feedback approach, are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method is extended to support a-cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL). Finally, from an integrated application analysis perspective, experimental studies based upon a real-world scenario of terrorism risk assessment are provided in order to demonstrate the potential and efficacy of the hierarchical fuzzy rule interpolation methodology. 

1 Introduction
1(16)
1.1 Fuzzy Logic
2(5)
1.1.1 Fuzzy Sets
2(2)
1.1.2 Fuzzy Inference Systems
4(3)
1.2 The "Curse of Dimensionality"
7(1)
1.3 Fuzzy Rule Interpolation (FRI)
8(1)
1.4 Backward Fuzzy Rule Interpolation (BFRI)
9(1)
1.5 Book Structure
10(2)
References
12(5)
2 Background: Fuzzy Rule Interpolation
17(42)
2.1 General Properties of FRI Methods
18(2)
2.2 Categories of FRI Methods
20(1)
2.3 Single-Step Fuzzy Rule Interpolation Methods
21(13)
2.3.1 KH Interpolation Method
21(5)
2.3.2 Other Single-Step Fuzzy Rule Interpolation Methods
26(8)
2.4 Intermediate Rule-Based Fuzzy Interpolation Methods
34(19)
2.4.1 Scale and Move Transformation-Based FRI (T-FRI)
35(9)
2.4.2 Other Intermediate Rule-Based Interpolation Methods
44(9)
2.5 Comparison Based on General Properties
53(1)
2.6 Summary
54(1)
References
54(5)
3 Transformation-Based Backward Fuzzy Rule Interpolation with a Single Missing Antecedent Value
59(16)
3.1 General Concept of BFRI with Single Missing Antecedent Value
61(1)
3.2 Process of S-BFRI
62(3)
3.2.1 Determination of the Closest Rules
62(1)
3.2.2 Construction of the Intermediate Fuzzy Terms
63(1)
3.2.3 Scale and Move Transformation
64(1)
3.3 Worked Examples
65(7)
3.4 Summary
72(1)
References
73(2)
4 Transformation Based Backward Fuzzy Rule Interpolation with Multiple Missing Antecedent Values
75(16)
4.1 Parametric Approach
75(4)
4.2 Feedback Approach
79(3)
4.3 Comparative Studies
82(6)
4.4 Summary
88(1)
References
88(3)
5 An Alternative Backward Fuzzy Rule Interpolation Method
91(16)
5.1 Fuzzy Interpolation for Multidimensional Input Spaces
91(9)
5.1.1 BFRI Using IMUL
94(3)
5.1.2 Worked Examples
97(3)
5.2 Experimentation and Discussion
100(6)
5.2.1 Synthetic Evaluation
100(1)
5.2.2 Practical Scenario
101(5)
5.3 Summary
106(1)
References
106(1)
6 Hierarchical Bidirectional Fuzzy Rule Interpolation and Rule Base Refinement
107(14)
6.1 Hierarchical Bidirectional Fuzzy Rule Interpolation
108(3)
6.1.1 Representation of Intermediate Variables
108(1)
6.1.2 Learning Algorithm
109(1)
6.1.3 Algorithm of HBFRI
110(1)
6.2 Function Approximation and Experimental Evaluation
111(3)
6.2.1 Experimental Setup
111(2)
6.2.2 Analysis of Results
113(1)
6.3 Refinement of Fuzzy Rule Base with HBFRI
114(2)
6.4 Numerical Example-Based Evaluation
116(1)
6.5 Summary
117(1)
References
118(3)
7 Application: Terrorism Risk Assessment Using BFRI
121(22)
7.1 Introduction
121(3)
7.2 A Hierarchical Terrorism Risk Assessment Framework
124(5)
7.2.1 Problem Specification
124(1)
7.2.2 Model Construction
124(5)
7.3 Experimental Studies of TRA Using HBFRI
129(9)
7.3.1 Simulated Assessment of Terrorist Risk Using HBFRI
129(3)
7.3.2 Prediction and Decision Supporting for Local Government
132(5)
7.3.3 Practical Significance of BFRI
137(1)
7.3.4 Use of Alternative Distance Metrics
137(1)
7.3.5 Multiple Equally Probable Interpolative Outcomes
138(1)
7.4 Summary
138(1)
References
139(4)
8 Conclusion
143(10)
8.1 Summary
143(3)
8.1.1 Transformation Based S-BFRI
143(1)
8.1.2 Transformation Based M-BFRI
144(1)
8.1.3 An Alternative BFRI Method
144(1)
8.1.4 Refinement of Rule Base Based on HBFRI
145(1)
8.1.5 Application: Terrorism Risk Assessment
145(1)
8.2 Future Work
146(3)
8.2.1 Generalisation of BFRI
146(1)
8.2.2 BFRI Versus Fuzzy Inversion
146(1)
8.2.3 Antecedent And/Or Rule Selection in Interpolation
147(1)
8.2.4 Enhancement of M-BFRI
147(1)
8.2.5 Improve Hierarchical Interpolation Using BFRI
147(1)
8.2.6 BFRI Based Rule Base Refinement
148(1)
8.2.7 "Many-to-One" Problem in BFRI
148(1)
8.2.8 Further Applications of FRI/BFRI
149(1)
References
149(4)
Appendix A Glossary of Terms 153(4)
Appendix B Examples for Calculations 157
Shangzhu Jin received his B.Sc. degree in Computer Science from Beijing Technology and Business University, China, his M.Sc. degree in Control Theory and Control from Yanshan University, China, and his Ph.D. degree from Aberystwyth University, UK. He is currently an Associate Professor at the School of Electronic Information Engineering, Chongqing University of Science and Technology. His research interests include fuzzy systems, approximate reasoning, and network security. His paper, entitled Backward Fuzzy Interpolation and Extrapolation with Multiple Multi-antecedent Rules won the best student paper award at the 21st IEEE International Conference on Fuzzy Systems. 





Qiang Shen is a Professor and Director of the Institute of Mathematics, Physics and Computer Science (IMPACS) at Aberystwyth University. His major research interests include computational intelligence, fuzzy and qualitative systems, reasoning and learning under uncertainty, pattern recognition, data mining, and real-world applications of such techniques for decision support (e.g., crime detection, space exploration, consumer profiling, systems monitoring, and medical diagnosis). He has published two research monographs and over 360 peer-refereed papers. A number of his papers have received prestigious international prizes. 





Jun Peng received a Ph.D. degree in Computer Software and Theory from Chongqing University in 2003, an M.A. in Computer System Architecture from Chongqing University in 2000, and a BSc in Applied Mathematics from Northeast University in 1992. From 1992 to present he has worked at Chongqing University of Science and Technology, where he is currently a Professor and Dean of the School of Electrical and Information Engineering. He was a visiting scholar in the Laboratory of Cryptography and Information Security at Tsukuba University, Japan in 2004, and at theDepartment of Computer Science at California State University, Sacramento in 2007, respectively. He has authored or coauthored over 60 peer-reviewed journal and conference papers. He has served as a program committee member or session co-chair for over 10 international conferences, e.g. the IEEE SEKE10, ICCI*CC11-17, ICISME 2012, andICOACS16. His current research interests are in cryptography, chaos and network security, image processingand intelligence computation.