|
|
1 | (8) |
|
1.1 Polish Spaces and Standard Borel Spaces |
|
|
1 | (2) |
|
|
3 | (3) |
|
|
6 | (2) |
|
|
8 | (1) |
|
2 The Standard Borel Space of all Separable Banach Spaces |
|
|
9 | (28) |
|
2.1 Definitions and Basic Properties |
|
|
9 | (4) |
|
|
10 | (1) |
|
2.1.2 Coding the Dual of an X ε SB |
|
|
11 | (2) |
|
|
13 | (3) |
|
|
16 | (7) |
|
|
16 | (2) |
|
2.3.2 Norm-Separable Compact Subsets of (Bz, w) |
|
|
18 | (1) |
|
2.3.3 The Szlenk Index is a II1/1-Rank on SD |
|
|
19 | (1) |
|
2.3.4 The Dual Class of an Analytic Subset of SD |
|
|
20 | (3) |
|
|
23 | (2) |
|
2.5 Coding Basic Sequences |
|
|
25 | (5) |
|
2.5.1 The Convergence Rank γ |
|
|
26 | (1) |
|
2.5.2 Subsequences Spanning Complemented Subspaces |
|
|
27 | (2) |
|
2.5.3 Proof of Theorem 2.20 |
|
|
29 | (1) |
|
|
30 | (4) |
|
|
34 | (3) |
|
|
37 | (20) |
|
|
37 | (1) |
|
3.2 The l2 Baire Sum of a Schauder Tree Basis |
|
|
38 | (2) |
|
3.3 Weakly Null Sequences in T2χ |
|
|
40 | (6) |
|
|
40 | (3) |
|
3.3.2 Sequences Satisfying an Upper l2 Estimate |
|
|
43 | (2) |
|
3.3.3 Proof of Theorem 3.6 |
|
|
45 | (1) |
|
3.4 Weakly X-Singular Subspaces |
|
|
46 | (4) |
|
|
50 | (4) |
|
3.6 Schauder Tree Bases Not Containing l1 |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
57 | (14) |
|
4.1 Definitions and Basic Properties |
|
|
57 | (3) |
|
4.2 Finding Incomparable Sets of Nodes |
|
|
60 | (5) |
|
|
65 | (4) |
|
|
69 | (2) |
|
5 Zippin's Embedding Theorem |
|
|
71 | (18) |
|
5.1 Fragmentation, Slicing, and Selection |
|
|
72 | (5) |
|
|
72 | (1) |
|
5.1.2 Slicing Associated to a Fragmentation |
|
|
73 | (1) |
|
5.1.3 Derivative Associated to a Fragmentation |
|
|
73 | (2) |
|
5.1.4 The "Last Bite" of a Slicing |
|
|
75 | (1) |
|
5.1.5 The "Dessert" Selection of a Fragmentation |
|
|
76 | (1) |
|
5.2 Parameterized Fragmentation |
|
|
77 | (3) |
|
|
80 | (4) |
|
5.4 Parameterizing Zippin's Theorem |
|
|
84 | (3) |
|
|
87 | (2) |
|
6 The Bourgain---Pisier Construction |
|
|
89 | (26) |
|
6.1 Kisliakov's Extension |
|
|
89 | (5) |
|
|
90 | (1) |
|
6.1.2 Preservation of Isomorphic Embeddings |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (1) |
|
6.2 Admissible Embeddings |
|
|
94 | (5) |
|
6.2.1 Stability Under Compositions |
|
|
96 | (1) |
|
6.2.2 Stability Under Quotients |
|
|
96 | (1) |
|
|
97 | (2) |
|
6.3 Inductive Limits of Finite-Dimensional Spaces |
|
|
99 | (3) |
|
|
102 | (1) |
|
6.5 Parameterizing the Construction |
|
|
103 | (6) |
|
|
109 | (4) |
|
6.6.1 A Result on Quotient Spaces |
|
|
109 | (3) |
|
|
112 | (1) |
|
|
113 | (2) |
|
7 Strongly Bounded Classes of Banach Spaces |
|
|
115 | (12) |
|
7.1 Analytic Classes of Separable Banach Spaces and Schauder Tree Bases |
|
|
115 | (3) |
|
|
118 | (1) |
|
7.3 Spaces with Separable Dual |
|
|
119 | (2) |
|
|
121 | (2) |
|
7.5 Spaces Not Containing a Minimal Space X |
|
|
123 | (2) |
|
|
125 | (2) |
|
|
127 | (10) |
|
|
137 | (12) |
|
|
137 | (1) |
|
B.2 Operators on Banach Spaces |
|
|
138 | (1) |
|
|
139 | (2) |
|
B.4 Local Theory of Infinite-Dimensional Banach Spaces |
|
|
141 | (1) |
|
B.5 Theorem 6.13: The Radon-Nikodym Property |
|
|
142 | (7) |
|
C The Kuratowski-Tarski Algorithm |
|
|
149 | (2) |
|
|
151 | (4) |
References |
|
155 | (4) |
Index |
|
159 | |