Atjaunināt sīkdatņu piekrišanu

E-grāmata: Baseband Receiver Design for Wireless MIMO-OFDM Communications

, , (National Taiwan University)
  • Formāts: EPUB+DRM
  • Sērija : IEEE Press
  • Izdošanas datums: 24-Apr-2012
  • Izdevniecība: Wiley-IEEE Press
  • Valoda: eng
  • ISBN-13: 9781118188217
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 130,81 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Sērija : IEEE Press
  • Izdošanas datums: 24-Apr-2012
  • Izdevniecība: Wiley-IEEE Press
  • Valoda: eng
  • ISBN-13: 9781118188217
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Electrical engineers Chiueh (National Taiwan U.), Pei-Yun Tsai (National Central U., Taiwan), and joining for the second edition I-Wei Lai (Academia Sinica, Taiwan) update the 2007 first edition by integrating multiple-input-multiple-output (MIMO) techniques into their explanation of orthogonal frequency-division multiplexing (OFDM), the favorite modulation technology for wireless communication systems. MIMO techniques enable higher throughput, larger cell coverage, and better quality of services, they say, but also entail high complexity in baseband transceiver design. They write for graduate or advanced undergraduate students with backgrounds in either very-large-scale integration (VLSI) design or signal processing, and for engineers working on algorithms or hardware for wireless communications systems. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

The Second Edition of OFDM Baseband Receiver Design for Wirless Communications, this book expands on the earlier edition with enhanced coverage of MIMO techniques, additional baseband algorithms, and more IC design examples. The authors cover the full range of OFDM technology, from theories and algorithms to architectures and circuits.

The Second Edition of OFDM Baseband Receiver Design for Wirless Communications, this book expands on the earlier edition with enhanced coverage of MIMO techniques, additional baseband algorithms, and more IC design examples. The authors cover the full range of OFDM technology, from theories and algorithms to architectures and circuits.

The book gives a concise yet comprehensive look at digital communication fundamentals before explaining signal processing algorithms in receivers. The authors give detailed treatment of hardware issues - from architecture to IC implementation.

  • Links OFDM and MIMO theory with hardware implementation
  • Enables the reader to transfer communication received concepts into hardware; design wireless receivers with acceptable implemntation loss; achieve low-power designs
  • Covers the latest standards, such as DVB-T2, WiMax, LTE and LTE-A
  • Includes more baseband algorithms, like soft-decoding algorithms such as BCJR and SOVA
  • Expanded treatment of channel models, detection algorithms and MIMO techniques
  • Features concrete design examples of WiMAX systems and cognitive radio apllications
  • Companion website with lecture slides for instructors

Based on materials developed for a course in digital communication IC design, this book is ideal for graduate students and researchers in VLSI design, wireless communications, and communications signal processing. Practicing engineers working on algorithms or hardware for wireless communications devices will also find this to be a key reference.

Preface xiii
About the Authors xvii
Acknowledgements xix
List of Abbreviations and Acronyms
xxi
PART ONE FUNDAMENTALS OF WIRELESS COMMUNICATION
1 Introduction
3(14)
1.1 Digital Broadcasting Systems
3(3)
1.1.1 Digital Audio Broadcasting (DAB)
4(1)
1.1.2 Digital Video Broadcasting (DVB)
4(2)
1.2 Mobile Cellular Systems
6(4)
1.2.1 Carrier Aggregation
8(1)
1.2.2 Multiple-Antenna Configuration
8(1)
1.2.3 Relay Transmission
9(1)
1.2.4 Coordinated Multipoint Transmission and Reception (CoMP)
9(1)
1.3 Wireless Network Systems
10(7)
1.3.1 Personal Area Network (PAN)
10(2)
1.3.2 Local Area Network (LAN)
12(1)
1.3.3 Metropolitan Area Network (MAN)
13(1)
1.3.4 Wide Area Network (WAN)
14(1)
Summary
14(1)
References
15(2)
2 Digital Modulation
17(22)
2.1 Single-Carrier Modulation
17(7)
2.1.1 Power Spectral Densities of Modulation Signals
18(1)
2.1.2 PSK, QAM, and ASK
19(3)
2.1.3 CPFSK and MSK
22(1)
2.1.4 Pulse Shaping and Windowing
23(1)
2.2 Multi-Carrier Modulation
24(9)
2.2.1 Orthogonal Frequency-Division Multiplexing
27(1)
2.2.2 OFDM Related Issues
27(4)
2.2.3 OFDM Transceiver Architecture
31(2)
2.3 Adaptive OFDM
33(6)
Summary
37(1)
References
37(2)
3 Advanced Wireless Technology
39(30)
3.1 Multiple-Input Multiple-Output (MIMO)
39(14)
3.1.1 Introduction
39(2)
3.1.2 MIMO Basics
41(2)
3.1.3 MIMO Techniques
43(7)
3.1.4 MIMO-OFDM System Example
50(3)
3.2 Multiple Access
53(6)
3.2.1 Frequency-Division Multiple Access (FDMA)
54(1)
3.2.2 Time-Division Multiple Access (TDMA)
54(1)
3.2.3 Code-Division Multiple Access (CDMA)
55(2)
3.2.4 Carrier Sense Multiple Access (CSMA)
57(1)
3.2.5 Orthogonal Frequency-Division Multiple Access (OFDMA)
57(1)
3.2.6 Space-Division Multiple Access (SDMA)
58(1)
3.3 Spread Spectrum and CDMA
59(10)
3.3.1 PN Codes
60(3)
3.3.2 Direct-Sequence Spread Spectrum
63(2)
3.3.3 Frequency-Hopping Spread Spectrum
65(1)
Summary
66(1)
References
67(2)
4 Error-Correcting Codes
69(26)
4.1 Introduction
69(1)
4.2 Block Codes
70(3)
4.2.1 Linear Codes
70(2)
4.2.2 Cyclic Codes
72(1)
4.3 Reed-Solomon Codes
73(4)
4.3.1 Finite Fields
74(1)
4.3.2 Encoding
75(1)
4.3.3 Decoding
76(1)
4.3.4 Shortened Reed-Solomon Codes
76(1)
4.4 Convolution Codes
77(4)
4.4.1 Encoding
77(2)
4.4.2 Viterbi Decoder
79(1)
4.4.3 Punctured Convolutional Codes
80(1)
4.5 Soft-Input Soft-Output Decoding Algorithms
81(6)
4.5.1 MAP Decoder
82(3)
4.5.2 Log-MAP Decoder
85(1)
4.5.3 Max-Log-MAP Decoder
86(1)
4.6 Turbo Codes
87(2)
4.6.1 Encoding
87(1)
4.6.2 Decoding
88(1)
4.7 Low-Density Parity-Check Codes
89(6)
4.7.1 Encoding
89(2)
4.7.2 Decoding
91(2)
Summary
93(1)
References
94(1)
5 Signal Propagation and Channel Model
95(32)
5.1 Introduction
95(1)
5.2 Wireless Channel Propagation
96(9)
5.2.1 Path Loss and Shadowing
96(1)
5.2.2 Multipath Fading
97(1)
5.2.3 Multipath Channel Parameters
98(6)
5.2.4 MIMO Channel
104(1)
5.3 Front-End Electronics Effects
105(6)
5.3.1 Carrier Frequency Offset
105(1)
5.3.2 Sampling Clock Offset
106(1)
5.3.3 Phase Noise
106(1)
5.3.4 IQ Imbalance and DC Offset
107(3)
5.3.5 Power Amplifier Nonlinearity
110(1)
5.4 Channel Model
111(16)
5.4.1 Model for Front-End Impairments
112(1)
5.4.2 Multipath Rayleigh Fader Model
113(3)
5.4.3 Channel Models Used in Standards
116(6)
Summary
122(1)
References
123(4)
PART TWO MIMO-OFDM RECEIVER PROCESSING
6 Synchronization
127(40)
6.1 Introduction
127(1)
6.2 Synchronization Issues
128(6)
6.2.1 Synchronization Errors
128(1)
6.2.2 Effects of Synchronization Errors
128(5)
6.2.3 Consideration for Estimation and Compensation
133(1)
6.3 Detection and Estimation of Synchronization Errors
134(19)
6.3.1 Symbol Timing Detection
134(9)
6.3.2 Carrier Frequency Offset Estimation
143(4)
6.3.3 Residual CFO and SCO Estimation
147(2)
6.3.4 Carrier Phase Estimation
149(1)
6.3.5 IQ Imbalance Estimation
150(3)
6.4 Detection and Estimation of Synchronization Errors in MIMO-OFDM Systems
153(5)
6.4.1 Symbol Timing Detection in MIMO-OFDM Systems
153(2)
6.4.2 Carrier Frequency Offset Estimation in MIMO-OFDM Systems
155(1)
6.4.3 Residual CFO and SCO Estimation in MIMO-OFDM Systems
156(1)
6.4.4 Carrier Phase Estimation in MIMO-OFDM Systems
157(1)
6.4.5 IQ Imbalance Estimation in MIMO-OFDM Systems
157(1)
6.5 Recovery of Synchronization Errors
158(9)
6.5.1 Carrier Frequency Offset Compensation
158(2)
6.5.2 Sampling Clock Offset and Common Phase Error Compensation
160(3)
6.5.3 IQ Imbalance Compensation
163(1)
Summary
163(1)
References
164(3)
7 Channel Estimation and Equalization
167(42)
7.1 Introduction
167(1)
7.2 Pilot Pattern
168(6)
7.2.1 Pilot Pattern in SISO-OFDM Systems
168(3)
7.2.2 Pilot Pattern in MIMO-OFDM Systems
171(3)
7.3 SISO-OFDM Channel Estimation
174(17)
7.3.1 Channel Estimation by Block-Type Pilot Symbols
177(2)
7.3.2 Channel Estimation by Comb-Type Pilot Symbols
179(7)
7.3.3 Channel Estimation by Grid-Type Pilot Symbols
186(5)
7.4 MIMO-OFDM Channel Estimation
191(3)
7.4.1 Space-Time Pilot
191(3)
7.5 Adaptive Channel Estimation
194(1)
7.6 Equalization
195(9)
7.6.1 One-Tap Equalizer
195(3)
7.6.2 Multi-Tap Equalizer
198(6)
7.7 Iterative Receiver
204(5)
7.7.1 Iterative Synchronization and Channel Estimation
205(1)
7.7.2 Bit-Interleaved Coded Modulation with Iterative Decoding (BICM-ID)
205(1)
Summary
206(1)
References
207(2)
8 MIMO Detection
209(44)
8.1 Introduction
209(1)
8.2 Linear Detection
210(2)
8.2.1 Zero Forcing (ZF)
210(1)
8.2.2 Minimum Mean Squared Error (MMSE)
211(1)
8.3 MIMO Detection with Channel Preprocessing
212(8)
8.3.1 Sorting
212(1)
8.3.2 QR Decomposition
213(2)
8.3.3 MMSE-SQRD
215(1)
8.3.4 Ordered Successive Interference Cancelation (OSIC)
216(2)
8.3.5 Lattice Reduction (LR)
218(2)
8.4 Sphere Decoder
220(10)
8.4.1 Depth-First Tree Search
221(2)
8.4.2 Breadth-First Tree Search
223(1)
8.4.3 Best-First Tree Search
224(3)
8.4.4 Complexity Measurement
227(1)
8.4.5 Design Space Exploration of Sphere Decoder
227(3)
8.5 Soft-Output Sphere Decoder
230(4)
8.5.1 Repeated Tree Search
231(1)
8.5.2 Single Tree Search
232(1)
8.5.3 LLR Clipping
232(2)
8.6 Iterative MIMO Detection
234(5)
8.6.1 List Sphere Decoder
234(1)
8.6.2 Soft-Input Soft-Output Sphere Decoder
235(2)
8.6.3 Iterative SIC-MMSE Detection
237(2)
8.7 Precoding
239(7)
8.7.1 Beam Steering
239(2)
8.7.2 Spatial Decorrelation
241(3)
8.7.3 Limited Feedback
244(2)
8.8 Space Block Code
246(7)
Summary
247(1)
References
248(5)
PART THREE HARDWARE DESIGN FOR MIMO-OFDM RECEIVERS
9 Circuit Techniques
253(40)
9.1 Introduction
253(1)
9.2 Fast Fourier Transform Modules
253(14)
9.2.1 FFT Algorithms
254(5)
9.2.2 Architecture
259(5)
9.2.3 Comparison
264(3)
9.3 Delay Buffer
267(7)
9.3.1 SRAM/Register File-Based Delay Buffer
267(1)
9.3.2 Pointer-Based Delay Buffer
268(1)
9.3.3 Gated Clock Strategy
269(3)
9.3.4 Comparison
272(2)
9.4 Circuits for Rectangular-to-Polar Conversion
274(12)
9.4.1 Arctangent Function
274(5)
9.4.2 Magnitude Function
279(7)
9.4.3 Comparison
286(1)
9.5 Circuits for Polar-to-Rectangular Conversion
286(7)
9.5.1 Trigonometric Approximation
287(1)
9.5.2 Polynomial Approximation
288(2)
9.5.3 Comparison
290(1)
Summary
290(1)
References
291(2)
10 MIMO IC Design Examples
293(28)
10.1 Introduction
293(1)
10.2 QR Decomposition IC
294(12)
10.2.1 System Description
294(1)
10.2.2 Algorithm Design
295(5)
10.2.3 Architecture Design
300(3)
10.2.4 Experimental Results
303(3)
10.3 8 × 8 Soft-Output Sphere Decoder
306(15)
10.3.1 Block Description
306(1)
10.3.2 Algorithm Design
306(1)
10.3.3 Architecture Design
307(9)
10.3.4 Experimental Results
316(2)
Summary
318(1)
References
319(2)
11 Mobile MIMO WiMAX System-on-Chip Design
321(22)
11.1 Introduction of WiMAX Standard
321(1)
11.2 Mobile WiMAX OFDMA and Frame Structure
322(3)
11.3 WiMAX Baseband Receiver Design
325(8)
11.3.1 Automatic Gain Control (AGC)
325(1)
11.3.2 Packet Detection (PKD)
326(2)
11.3.3 Symbol Timing Recovery (STR)
328(1)
11.3.4 Carrier Frequency Offset (CFO) Compensation
328(2)
11.3.5 Channel Estimation
330(1)
11.3.6 MIMO Detection
330(3)
11.3.7 Outer Receiver
333(1)
11.4 WiMAX Media Access Control (MAC) Design
333(3)
11.5 Implementation and Field Trial of the WiMAX SoC
336(7)
11.5.1 Laboratory Testing and Performance Evaluation
338(2)
11.5.2 Taiwan High Speed Rail Field Trial
340(1)
Summary
341(1)
References
341(2)
Index 343
Tzi-Dar Chiueh, National Taiwan University, Taiwan Tzi-Dar Chiueh is a Professor of Electrical Engineering at National Taiwan University and Director General of the National Chip Implementation Center in Hsinchu, Taiwan. He has also held visiting positions at ETH Zurich Switzerland at State University of New York at Stony Brook. Chiueh has won numerous awards, including the Acer Long-Term (11 times), the Golden Silicon Award (2002, 2005, 2007, and 2009), NTU Teaching Excellence Award (2002, 2003, 2005, 2006, 2007, and 2010), National Science Council's Outstanding Research Award (20042007), Chinese Institute of Electrical Engineers' Outstanding Electrical Engineering Professor, NTU Himax Chair Professorship (2006), and the Ministry of Economic Affairs' Outstanding Industry Contribution Award (2009). He holds a B.S. in Electrical Engineering from National Taiwan University, and an M.S and PhD in Electrical Engineering from the California Institute of Technology. Pei-Yun Tsai, National Central University, Taiwan Pei-Yun Tsai is an Assistant Professor in Electrical Engineering at National Central University. Her research interests are digital baseband communication algorithms, MIMO techniques, and low-power IC/architecture implementation for telecommunications receivers. Tsai has won a number chipset design awards. She holds a B.S, M.S. and PhD in electrical engineering from National Taiwan University.

I-Wei Lai, National Taiwan University, Taiwan I-Wei Lai is with the Microsystem Research Lab at National Taiwan University. His research interests include baseband signal processing algorithms and VLSI design.