Atjaunināt sīkdatņu piekrišanu

E-grāmata: Basic Monotonicity Methods with Some Applications

  • Formāts: EPUB+DRM
  • Sērija : Compact Textbooks in Mathematics
  • Izdošanas datums: 01-Sep-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030753085
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 47,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Compact Textbooks in Mathematics
  • Izdošanas datums: 01-Sep-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030753085
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook introduces some basic tools from the theory of monotone operators together with some of their applications. Examples that work  for ordinary differential equations are provided. The illustrating material is kept relatively simple, while at the same time offering inspiring applications to the reader.

The material will appeal to graduate students in mathematics who want to learn some basics in the theory of monotone operators. Furthermore, it offers a smooth transition to studying more advanced topics pertaining to more refined applications by shifting to pseudomonotone operators, and next, to multivalued monotone operators.


Recenzijas

This monograph is an excellent addition to the literature on nonlinear analysis, especially the theory of monotone operators. The presentation is brief, in large parts, but quite informative. This is a very readable text and is mostly self-contained. This should serve as a text for anyone who wants to know about the most important aspects of monotone operators, especially a researcher who wants to pursue the area of monotone operator theory. (K. C. Sivakumar, zbMATH 1486.47001, 2022)

I enjoyed reading this book and can confidently recommend it to any instructor teaching a course on monotonicity methods. (Casey Timothy Cremins, Mathematical Reviews, June, 2022)

1 Introduction to the Topic of the Course
1(14)
1.1 Some Outline of the Problem Under Consideration
1(3)
1.2 The Finite Dimensional Monotonicity Methods
4(7)
1.3 Applications to Discrete Equations
11(4)
2 Some Excerpts from Functional Analysis
15(40)
2.1 On the Weak Convergence
15(8)
2.2 On the Function Spaces
23(12)
2.3 On the du Bois-Reymond Lemma and the Regularity of Solutions
35(1)
2.4 Nemytskii Operator and the Krasnosel'skii Type Theorem
36(3)
2.5 Differentiation in Banach Spaces
39(7)
2.6 A Detour on a Direct Method in the Calculus of Variation
46(9)
3 Monotone Operators
55(26)
3.1 Monotonicity
55(4)
3.2 On Some Properties of Monotone Operators
59(6)
3.3 Different Types of Continuity
65(4)
3.4 Coercivity
69(2)
3.5 An Example of a Monotone Mapping
71(4)
3.6 Condition (S) and Some Other Related Notions
75(2)
3.7 The Minty Lemma and the Fundamental Lemma for Monotone Operators
77(4)
4 On the Fenchel-Young Conjugate
81(10)
4.1 Some Background from Convex Analysis
81(4)
4.2 On the Conjugate and Its Properties
85(6)
5 Potential Operators
91(16)
5.1 Basic Concepts and Properties
91(7)
5.2 Invertible Potential Operators
98(3)
5.3 Criteria for Checking the Potentiality
101(6)
6 Existence of Solutions to Abstract Equations
107(18)
6.1 Preliminary Result
107(2)
6.2 The Browder--Minty Theorem
109(7)
6.3 Some Useful Corollaries
116(1)
6.4 The Strongly Monotone Principle
117(1)
6.5 Pseudomonotone Operators
118(3)
6.6 The Leray--Lions Theorem
121(4)
7 Normalized Duality Mapping
125(12)
7.1 Introductory Notions and Properties
125(5)
7.2 Examples of a Duality Mapping
130(2)
7.2.1 A Duality Mapping for H01 (0, 1)
130(1)
7.2.2 On a Duality Mapping for LP (0, 1)
131(1)
7.2.3 On a Duality Mapping for W1,p0 (0, 1)
132(1)
7.3 On the Strongly Monotone Principle in Banach Spaces
132(2)
7.4 On a Duality Mapping Relative to a Normalization Function
134(3)
8 On the Galerkin Method
137(6)
8.1 Basic Notions and Results
137(3)
8.2 On the Galerkin and the Ritz Method for Potential Equations
140(3)
9 Some Selected Applications
143(32)
9.1 On Nonlinear Lax-Milgram Theorem and the Nonlinear Orthogonality
143(4)
9.2 On a Certain Converse of the Lax-Milgram Theorem
147(1)
9.3 Applications to the Differentiability of the Fenchel-Young Conjugate
148(2)
9.4 Applications to Minimization Problems
150(4)
9.5 Applications to the Semilinear Dirichlet Problem
154(6)
9.5.1 Examples and Special Cases
159(1)
9.6 Applications to Problems with the Generalized p---Laplacian
160(5)
9.7 Applications of the Leray---Lions Theorem
165(4)
9.8 On Some Application of a Direct Method
169(6)
References 175(4)
Index 179
Marek Galewski is a professor at the Institute of Mathematics of the Lodz University of Technology in Lodz, Poland.