Atjaunināt sīkdatņu piekrišanu

E-grāmata: Basic Transport Phenomena in Biomedical Engineering

(University of Toledo, Ohio, USA)
  • Formāts: 654 pages
  • Izdošanas datums: 07-Aug-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498768740
  • Formāts - EPUB+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 654 pages
  • Izdošanas datums: 07-Aug-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781498768740

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This will be a substantial revision of a good selling text for upper division/first graduate courses in biomedical transport phenomena, offered in many departments of biomedical and chemical engineering. Each chapter will be updated accordingly, with new problems and examples incorporated where appropriate. A particular emphasis will be on new information related to tissue engineering and organ regeneration. A key new feature will be the inclusion of complete solutions within the body of the text, rather than in a separate solutions manual. Also, Matlab will be incorporated for the first time with this Fourth Edition.

Recenzijas

"This is an excellent undergraduate biotransport text that presents material in a logical, easily understandable fashion. The book does a great job of incorporating problem solving and dimensional analysis using topics that are relevant and timely. It is a pleasure to teach from this textbook." Christopher Brigham, University of Massachusetts Dartmouth, USA





"The text provides a comprehensive introduction to a complex topic which brings together a number of different scientific disciplines. In addition, the text provides the student with some worked examples to enhance understanding." Nicholas Hoenich, Newcastle University, UK





"My course at Rutgers consistently has garnered very positive feedback from the students, and I am delighted that the book is being continually updated and aligned to suit the newer demands of our academic discipline." Prabhas Moghe, Rutgers University, New Jersey, USA

Preface xvii
Notation xix
Author xxix
1 Introduction 1(34)
1.1 Review of units and dimensions
1(7)
1.1.1 Units
1(1)
1.1.2 Fundamental dimensions
1(4)
1.1.2.1 Mass and weight
3(1)
1.1.2.2 Temperature
4(1)
1.1.2.3 Mole
5(1)
1.1.3 Derived dimensional quantities
5(4)
1.1.3.1 Pressure
6(1)
1.1.3.2 Volume
7(1)
1.1.3.3 Equations of state
7(1)
1.2 Dimensional equation
8(1)
1.3 Conservation of mass
9(9)
1.3.1 Law of conservation
9(2)
1.3.2 Chemical reactions
11(2)
1.3.3 The extent of a chemical reaction
13(2)
1.3.4 Material balances
15(3)
1.4 lips for solving engineering problems
18(1)
1.5 Useful numerical methods
19(14)
Problems
33(2)
2 A review of thermodynamic concepts 35(90)
2.1 The first law of thermodynamics
35(3)
2.1.1 Closed systems
35(1)
2.1.2 Steady flow processes
36(2)
2.2 The second law of thermodynamics
38(1)
2.2.1 Reversible processes
38(1)
2.3 Properties
39(4)
2.3.1 Heat capacity
40(1)
2.3.2 Calculating the change in entropy
41(2)
2.3.2.1 Entropy change of an ideal gas
41(2)
2.3.3 The Gibbs and Helmholtz free energy
43(1)
2.3.3.1 Gibbs free energy
43(1)
2.3.3.2 Helmholtz free energy
43(1)
2.4 The fundamental property relations
43(3)
2.4.1 Exact differentials
44(2)
2.5 Single phase open systems
46(12)
2.5.1 Partial molar properties
47(5)
2.5.1.1 Binary systems
48(1)
2.5.1.2 Property changes of mixing
49(1)
2.5.1.3 Ideal gas
49(2)
2.5.1.4 Gibbs free energy of an ideal gas mixture
51(1)
2.5.2 Pure component fugacity
52(3)
2.5.2.1 Calculating the pure component fugacity
53(2)
2.5.3 Fugacity of a component in a mixture
55(1)
2.5.4 The ideal solution
56(2)
2.6 Phase equilibrium
58(57)
2.6.1 Pure component phase equilibrium
59(3)
2.6.1.1 Fugacity of a pure component as a compressed liquid
62(1)
2.6.2 Excess properties
62(4)
2.6.3 Applications of equilibrium thermodynamics
66(63)
2.6.3.1 Solubility of a solid in a liquid solvent
66(5)
2.6.3.2 Depression of the freezing point of a solvent by a solute
71(2)
2.6.3.3 Equilibrium between a solid and a gas phase
73(1)
2.6.3.4 Solubility of a gas in a liquid
74(4)
2.6.3.5 Osmotic pressure
78(3)
2.6.3.6 Distribution of a solute between two liquid phases
81(2)
2.6.3.7 Single-stage solute extraction
83(1)
2.6.3.8 Multistage solute extraction
84(3)
2.6.3.9 Vapor-liquid equilibrium
87(4)
2.6.3.10 Flammability limits
91(3)
2.6.3.11 Thermodynamics of surfaces
94(3)
2.6.3.12 Equilibrium dialysis
97(5)
2.6.3.13 The Gibbs-Donnan effect
102(6)
2.6.3.14 Donnan potential
108(1)
2.6.3.15 Chemical equilibrium in ideal aqueous solutions
109(6)
Problems
115(10)
3 Physical properties of the body fluids and the cell membrane 125(28)
3.1 Body fluids
125(1)
3.2 Fluid compositions
126(1)
3.3 Capillary plasma protein retention
127(2)
3.4 Osmotic pressure
129(3)
3.4.1 Osmolarity
129(1)
3.4.2 Calculating the osmotic pressure
130(1)
3.4.3 Other factors that may affect the osmotic pressure
131(1)
3.5 Filtration flow across a membrane
132(4)
3.5.1 Predicting the hydraulic conductance
133(3)
3.5.1.1 Rectangular pores
135(1)
3.6 Net capillary filtration rate
136(2)
3.6.1 A comparison of the blood flow into the capillary with the capillary filtration flow rate
138(1)
3.7 Lymphatic system
138(1)
3.8 Solute transport across the capillary endothelium
139(1)
3.9 The cell membrane
140(6)
3.9.1 Action potentials
143(3)
3.10 Ion pumps maintain nonequilibrium state of the cell
146(1)
Problems
147(6)
4 The physical and flow properties of blood and other fluids 153(68)
4.1 Physical properties of blood
153(1)
4.2 Cellular components
153(1)
4.3 Rheology
154(4)
4.4 The capillary viscometer and laminar flow in tubes
158(5)
4.4.1 Hagen-Poiseuille equation for laminar flow of a Newtonian liquid in a cylindrical tube
159(3)
4.4.1.1 Laminar flow of a Newtonian fluid through a tube of very short length
162(1)
4.4.2 Hagen-Poiseuille equation for laminar flow of a Newtonian liquid in tubes of noncircular cross section
162(1)
4.5 The Rabinowitsch equation for the flow of a non-Newtonian fluid in a cylindrical tube
163(1)
4.6 Other useful flow relationships
164(2)
4.7 The rheology of blood and the Casson equation
166(4)
4.7.1 The Casson equation
166(1)
4.7.2 Using the Casson equation
167(1)
4.7.3 The velocity profile for tube flow of a Casson fluid
168(2)
4.7.4 Tube flow of blood at low shear rates
170(1)
4.8 The effect of tube diameter at high shear rates
170(7)
4.8.1 The Fahraeus effect
170(1)
4.8.2 The Fahraeus-Lindqvist effect
171(2)
4.8.3 Marginal zone theory
173(4)
4.8.3.1 Using the marginal zone theory
175(2)
4.9 Boundary layer theory
177(11)
4.9.1 The flow near a wall that is set in motion
177(5)
4.9.2 Laminar flow of a fluid along a flat plate
182(6)
4.9.2.1 Approximate solution for laminar boundary flow over a flat plate
183(5)
4.10 Generalized mechanical energy balance equation
188(12)
4.10.1 The hydraulic diameter
191(9)
4.11 Capillary rise and capillary action
200(5)
4.11.1 Equilibrium capillary rise
200(2)
4.11.2 Dynamics of capillary action
202(3)
Problems
205(16)
5 Mass transfer fundamentals 221(68)
5.1 Description of solute mass transfer
221(1)
5.2 Important definitions used in solute mass transfer
221(7)
5.2.1 Binary diffusion
223(1)
5.2.2 Fick's first law
223(1)
5.2.3 Simplifications of Fick's first law
224(1)
5.2.3.1 The case of forced convection
224(1)
5.2.3.2 The case of a stagnant or quiescent fluid
224(1)
5.2.3.3 The case of dilute solutions
225(1)
5.2.3.4 Equimolar counterdiffusion
225(1)
5.2.4 Boundary conditions for diffusion problems
225(3)
5.2.4.1 Concentration is known at the boundary
225(1)
5.2.4.2 Zero solute flux at the boundary
226(1)
5.2.4.3 Convective transport at the boundary
226(1)
5.2.4.4 Chemical reaction at the boundary
226(2)
5.3 Estimating the diffusivity
228(4)
5.3.1 Stokes-Einstein equation
229(3)
5.4 Fick's second law
232(2)
5.5 Some solutions to Fick's second law
234(6)
5.5.1 Solution for the concentration profile for diffusion from a flat plate into a semi-infinite stagnant medium
234(2)
5.5.1.1 Calculation of the solute flux at the surface of the plate
236(1)
5.5.2 Solution for the concentration profile for diffusion from a planar source into an infinite stagnant medium
236(2)
5.5.3 Solution for the concentration profile for diffusion from a point source into an infinite planar stagnant medium
238(2)
5.6 The mass transfer coefficient
240(1)
5.6.1 The Sherwood number
241(1)
5.7 Diffusion from a flat plate into a semi-infinite stagnant medium
241(2)
5.7.1 Film theory
242(1)
5.8 Mass transfer from the surface of a sphere into an infinite quiescent medium
243(4)
5.8.1 Mass transfer between the surface of a sphere and a flowing fluid
247(1)
5.9 Solute transport by convection and diffusion
247(28)
5.9.1 Solute mass transfer from a gas into a falling liquid film: short contact time solution
248(8)
5.9.1.1 A general solution for gas absorption into a laminar falling liquid film
254(2)
5.9.2 Mass transfer from a rotating disk
256(6)
5.9.3 Mass transfer in laminar boundary layer flow over a flat plate
262(6)
5.9.4 Mass transfer between the wall of a cylindrical tube and a fluid in laminar flow
268(7)
5.9.4.1 Overall solute mass balance for the short contact time solution
273(2)
5.10 The general case of mass transfer between the wall of a cylindrical tube and a flowing fluid
275(3)
5.10.1 Derivation of the log mean concentration difference
276(1)
5.10.2 Mass transfer in a tube of arbitrary cross section
277(1)
5.11 A summary of useful mass transfer coefficient correlations
278(4)
5.11.1 Mass transfer for undeveloped laminar flow in a cylindrical tube
278(4)
Problems
282(7)
6 Mass transfer in heterogeneous materials 289(60)
6.1 Solute diffusion within heterogeneous media
289(18)
6.1.1 Solute transport across thin porous membranes
289(9)
6.1.1.1 Steric exclusion and hindered diffusion
290(1)
6.1.1.2 Solute diffusion in a single pore of a thin planar membrane
291(1)
6.1.1.3 Solute diffusion across a thin planar membrane
292(1)
6.1.1.4 The Renkin equation
293(2)
6.1.1.5 Solute membrane permeability
295(1)
6.1.1.6 Capillary wall solute permeability
295(1)
6.1.1.7 Membrane permeability and the overall mass transfer coefficient
296(2)
6.1.2 Diffusion of a solute from within a porous polymeric material
298(6)
6.1.2.1 A solution valid for short contact times
301(3)
6.1.2.2 A solution valid for long contact times
304(1)
6.1.3 Diffusion in blood and tissue
304(2)
6.1.3.1 Diffusion in the interstitial fluid and other gel-like materials
305(1)
6.1.4 Solute transport across gel membranes
306(1)
6.2 The irreversible thermodynamics of membrane transport
307(6)
6.2.1 Finding LP, Pm, and sigma
310(2)
6.2.1.1 Estimating the reflection coefficient
311(1)
6.2.2 Multicomponent membrane transport
312(1)
6.2.3 Membrane Peclet number
312(1)
6.3 Solute transport by filtration and diffusion across the capillary wall
313(4)
6.4 Transport of a solute between a capillary and the surrounding tissue space
317(12)
6.4.1 The Krogh tissue cylinder
318(1)
6.4.2 A model of the Krogh tissue cylinder
319(5)
6.4.2.1 The critical radius
321(2)
6.4.2.2 A comparison of convection and diffusion effects
323(1)
6.4.3 The Renkin-Crone equation
324(4)
6.4.3.1 Determining the value of PmS
326(2)
6.4.4 Solute transport in vascular beds: The well-mixed assumption
328(1)
6.5 Solute transport by filtration flow across a membrane
329(10)
6.5.1 The change in the bulk flow of a fluid flowing within a hollow fiber with filtration
333(1)
6.5.2 Describing the change in the bulk concentration of a solute in a fluid flowing in a hollow fiber with filtration
334(5)
Problems
339(10)
7 Oxygen transport in biological systems 349(50)
7.1 The diffusion of oxygen in multicellular systems
349(5)
7.1.1 pO2 and Henry's constant
349(1)
7.1.2 Oxygen transport to a spherical volume of cells
350(4)
7.2 Hemoglobin
354(1)
7.3 The oxygen-hemoglobin dissociation curve
355(1)
7.4 Oxygen levels in blood
356(1)
7.5 The Hill equation
356(2)
7.6 Other factors that can affect the oxygen-hemoglobin dissociation curve
358(1)
7.7 Tissue oxygenation
359(4)
7.7.1 Nominal tissue oxygen consumption rate
360(1)
7.7.2 Calculating the venous pO2 for a given oxygen demand
361(2)
7.8 Oxygen transport in blood oxygenators, bioartificial organs, and tissue engineered constructs
363(9)
7.8.1 Oxygen mass balance for a blood oxygenator
363(1)
7.8.2 Oxygen transport in planar bioartificial organs
364(3)
7.8.3 Oxygen transport in planar tissue engineered constructs
367(5)
7.8.3.1 In vitro culture of planar tissue engineered constructs
368(2)
7.8.3.2 Maximum thickness of planar tissue engineered constructs
370(2)
7.9 Oxygen transport in perfusion bioreactors
372(9)
7.9.1 A model of convective and diffusive transport of oxygen through a planar layer of cells
373(3)
7.9.2 A microchannel perfusion bioreactor
376(5)
7.10 Oxygen transport in the Krogh tissue cylinder
381(3)
7.10.1 Capillary oxygenated hemoglobin mass balance
381(1)
7.10.2 Capillary unbound oxygen mass balance
381(2)
7.10.2.1 The slope of the oxygen hemoglobin dissociation curve
382(1)
7.10.3 Tissue oxygen mass balance
383(1)
7.11 An approximate solution for oxygen transport in the Krogh tissue cylinder
384(3)
7.12 Artificial blood
387(4)
Problems
391(8)
8 Pharmacokinetic analysis 399(52)
8.1 Terminology
399(1)
8.2 Entry routes for drugs
399(2)
8.3 PK modeling approaches
401(2)
8.3.1 Compartmental pharmacokinetic models
401(1)
8.3.2 Physiological pharmacokinetic models
402(1)
8.3.3 Model independent pharmacokinetic models
402(1)
8.4 Factors that affect drug distribution
403(7)
8.4.1 Drug distribution volumes
403(1)
8.4.2 Apparent distribution volume
404(1)
8.4.3 The Oie-Tozer equation for the apparent distribution volume
404(3)
8.4.4 Drug metabolism
407(1)
8.4.5 Renal excretion of the drug
408(2)
8.5 Drug clearance
410(4)
8.5.1 Renal clearance
410(2)
8.5.2 Plasma clearance
412(1)
8.5.3 Biological half-life
413(1)
8.5.4 The area under the curve, AUC0—>infinity
413(1)
8.5.5 Accumulation of the drug in urine
413(1)
8.6 A model for intravenous injection of drug
414(1)
8.7 Continuous infusion of a drug
415(14)
8.7.1 Application to controlled release of drugs by osmotic pumps
418(2)
8.7.2 Controlled release of drugs from transdermal patches
420(7)
8.7.2.1 Predicting the permeability of the skin
423(1)
8.7.2.2 Experimental measurement of stratum corneum solute permeability
424(3)
8.7.3 Controlled release of drugs from implantable devices
427(2)
8.8 First-order drug absorption and elimination
429(4)
8.9 Two-compartment models
433(7)
8.9.1 Two-compartment model for an intravenous injection
434(3)
8.9.2 Two-compartment model for first order absorption
437(3)
8.9.3 Two-compartment model with drug absorption from a transdermal patch
440(1)
8.9.4 Two-compartment model with drug absorption from an implantable device
440(1)
8.10 Superposition principle
440(1)
Problems
441(10)
9 Extracorporeal devices 451(64)
9.1 Applications
451(1)
9.2 Contacting schemes
451(2)
9.3 Solute transport in extracorporeal devices
453(3)
9.3.1 Estimating the mass transfer coefficients
453(1)
9.3.2 Estimating the solute diffusivity in blood
454(2)
9.4 Hemodialysis
456(14)
9.4.1 Background
456(1)
9.4.2 Dialysate composition
457(1)
9.4.3 Role of ultrafiltration
458(1)
9.4.4 Clearance and dialysance
459(1)
9.4.5 Solute transfer
460(4)
9.4.6 A single-compartment model of urea hemodialysis
464(2)
9.4.6.1 Daily home hemodialysis
466(1)
9.4.7 Peritoneal dialysis
466(4)
9.4.7.1 Constant volume model of CAPD
468(1)
9.4.7.2 A simple CAPD model that includes ultrafiltration
469(1)
9.4.8 Aquapheresis
470(1)
9.5 Blood oxygenators
470(18)
9.5.1 Background
470(1)
9.5.2 Operating characteristics of blood oxygenators
471(1)
9.5.3 Types of oxygenators
472(3)
9.5.4 Analysis of a membrane oxygenator: Oxygen transfer
475(7)
9.5.4.1 Constant oxygen partial pressure in the gas phase
478(1)
9.5.4.2 Constant oxygen partial pressure in the gas phase and external cross flow of the blood over the hollow fibers
478(1)
9.5.4.3 Calculation of the blood-side mass transfer coefficient
479(3)
9.5.5 Analysis of a membrane oxygenator: Carbon dioxide transfer
482(2)
9.5.6 Example calculations for membrane oxygenators
484(4)
9.6 Immobilized enzyme reactors
488(17)
9.6.1 Background
488(1)
9.6.2 Examples of medical application of immobilized enzymes
489(1)
9.6.3 Enzyme reaction kinetics
490(3)
9.6.4 Reaction and diffusion in immobilized enzyme systems
493(2)
9.6.5 Solving the immobilized enzyme reaction-diffusion model
495(2)
9.6.6 Special case of a first order reaction
497(2)
9.6.6.1 Spherical enzyme particle
497(1)
9.6.6.2 Cylindrical enzyme particle
497(1)
9.6.6.3 Flat plate enzyme particle
498(1)
9.6.7 Observed reaction rate
499(1)
9.6.8 External mass transfer resistance
499(1)
9.6.8.1 External mass transfer resistance for a first order reaction
500(1)
9.6.9 Reactor design equations
500(5)
9.6.9.1 Packed bed reactor
501(1)
9.6.9.2 Packed bed reactor with first-order kinetics and internal and external diffusion limitations
502(1)
9.6.9.3 Well-mixed reactor
502(1)
9.6.9.4 Well-mixed reactor with first-order kinetics and internal and external diffusion limitations
503(2)
9.7 Affinity adsorption
505(4)
9.7.1 Affinity adsorption of preformed antibodies
506(1)
9.7.2 Analysis of an affinity adsorption system to remove preformed antibodies
507(2)
Problems
509(6)
10 Tissue engineering and regenerative medicine 515(30)
10.1 Introduction
515(1)
10.2 Background
515(4)
10.2.1 Cells for TERM
516(1)
10.2.2 The tissue engineering process
517(2)
10.2.2.1 Immunoprotection of the transplanted cells
518(1)
10.3 The extracellular matrix
519(3)
10.3.1 Glycosaminoglycans
521(1)
10.3.2 Collagens
521(1)
10.3.3 Elastin
521(1)
10.3.4 Fibronectin
521(1)
10.3.5 Aggrecan
522(1)
10.3.6 Basement membrane
522(1)
10.4 Cellular interactions
522(4)
10.4.1 Cadherins
523(1)
10.4.2 Selectins
523(1)
10.4.3 Cell adhesion molecules
523(1)
10.4.4 Integrins
524(1)
10.4.5 Cytokines and growth factors
525(1)
10.5 Support structures for tissue engineering applications
526(8)
10.5.1 Biomaterials
527(3)
10.5.2 Techniques for making polymeric scaffolds
530(4)
10.5.2.1 3D printing
531(2)
10.5.2.2 Bioprinting
533(1)
10.6 Biocompatibility and the initial response to an implant
534(1)
10.6.1 The body's response to an implant
535(1)
10.7 Cell transplantation into scaffolds
535(2)
10.8 Bioreactor design for tissue engineering
537(4)
Problems
541(4)
11 Bioartificial organs 545(48)
11.1 Background
545(1)
11.2 Some immunology
545(7)
11.2.1 B-Lymphocytes
546(1)
11.2.2 Antibodies
546(2)
11.2.3 T-Lymphocytes
548(2)
11.2.4 Interaction between APCs, B cells, and T cells
550(1)
11.2.5 The immune system and transplanted cells
551(1)
11.3 Immunoisolation
552(3)
11.4 Permeability of immunoisolation membranes
555(3)
11.5 Membrane Sherwood number
558(1)
11.6 Examples of bioartificial organs
558(20)
11.6.1 The bioartificial pancreas
559(9)
11.6.1.1 Bioartificial pancreas approaches
561(1)
11.6.1.2 Intravascular devices
561(2)
11.6.1.3 Microencapsulation
563(2)
11.6.1.4 Macroencapsulation
565(3)
11.6.2 Number of islets needed
568(1)
11.6.3 Islet insulin release model
569(3)
11.6.4 Pharmacokinetic modeling of glucose and insulin interactions
572(3)
11.6.5 Using the pharmacokinetic model to evaluate the performance of a bioartificial pancreas
575(3)
11.7 The bioartificial liver
578(9)
11.7.1 Artificial liver systems
579(1)
11.7.2 Bioartificial livers
580(2)
11.7.3 Examples of extracorporeal bioartificial livers
582(5)
11.8 The bioartificial kidney
587(2)
11.9 Design considerations for bioartificial organs
589(1)
Problems
590(3)
References 593(18)
Index 611
Ronald L. Fournier is a professor in the Department of Bioengineering at The University of Toledo in Ohio. He was also the founding chair of this department. During his 32 years at Toledo, he has taught a variety of chemical engineering and bioengineering subjects, including courses in biochemical engineering, chemical reactor engineering, biomedical engineering transport phenomena, design and entrepreneurship, biomechanics, and artificial organs. His research interests and scholarly publications are in the areas of bioartificial organs, tissue engineering, novel bioreactors, photodynamic therapy, and pharmacokinetics. In addition to his professional career, he also observes variable stars and is a member of the American Association of Variable Star Observers (AAVSO).