Atjaunināt sīkdatņu piekrišanu

E-grāmata: Basics of Laser Physics: For Students of Science and Engineering

  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 30-Mar-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319506517
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 30-Mar-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319506517
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book offers a general description of the laser, theoretical and operational details of gas, solid state, free-electron and semiconductor lasers. Includes a uniform treatment of gas and solid-state lasers on one hand, and semiconductor lasers on the other.

This textbook provides an introductory presentation of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers. This expanded and updated second edition of the book presents a description of the dynamics of free-electron laser oscillation using a model introduced in the first edition that allows a reader to understand basic properties of a free-electron laser and makes the difference to “conventional” lasers. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses graduate and undergraduate students in science and engineering, featuring problems with solutions and over 400 illustrations.


Part I General Description of a Laser and an Example
1 Introduction
3(14)
1.1 Laser and Light Bulb
3(1)
1.2 Spectral Ranges of Lasers and List of a Few Lasers
4(2)
1.3 Laser Safety
6(1)
1.4 Sizes of Lasers, Cost of Lasers, and Laser Market
7(1)
1.5 Questions about the Laser
8(1)
1.6 Different Types of Lasers in the Same Spectral Range
9(1)
1.7 Concept of the Book
9(2)
1.8 References
11(1)
1.9 A Remark About the History of the Laser
11(6)
Problems
14(3)
2 Laser Principle
17(26)
2.1 A Laser
18(1)
2.2 Coherent Electromagnetic Wave
18(4)
2.3 An Active Medium
22(4)
2.4 Laser Resonator
26(6)
2.5 Laser = Laser Oscillator
32(1)
2.6 Radiation Feedback and Threshold Condition
32(3)
2.7 Frequency of Laser Oscillation
35(1)
2.8 Data of Lasers
36(2)
2.9 Oscillation Onset Time
38(5)
Problems
40(3)
3 Fabry--Perot Resonator
43(14)
3.1 Laser Resonators and Laser Mirrors
43(2)
3.2 V Factor and Related Quantities
45(1)
3.3 Number of Photons in a Resonator Mode
46(1)
3.4 Ideal Mirror
47(1)
3.5 Fabry--Perot Interferometer
48(3)
3.6 Resonance Curve of a Fabry--Perot Resonator
51(1)
3.7 Fabry--Perot Resonator Containing a Gain Medium
52(5)
Problems
54(3)
4 The Active Medium: Energy Levels and Lineshape Functions
57(20)
4.1 Two-Level Based and Energy-Ladder Based Lasers
58(1)
4.2 Four-Level, Three-Level, and Two-Level Lasers
59(2)
4.3 Two-Band Laser and Quasiband Laser
61(2)
4.4 Lineshape: Homogeneous and Inhomogeneous Line Broadening
63(1)
4.5 Lorentz Functions
64(4)
4.6 Gaussian Lineshape Function
68(1)
4.7 Experimental Linewidths
69(1)
4.8 Classical Oscillator Model of an Atom
69(2)
4.9 Natural Line Broadening
71(1)
4.10 Energy Relaxation
72(1)
4.11 Dephasing
73(1)
4.12 Dipole Oscillator and Monopole Oscillator
73(1)
4.13 Three-Dimensional and Low-Dimensional Active Media
74(3)
Problems
75(2)
5 Titanium--Sapphire Laser
77(8)
5.1 Principle of the Titanium--Sapphire Laser
77(2)
5.2 Design of a Titanium--Sapphire Laser
79(1)
5.3 Absorption and Fluorescence Spectra of Titanium--Sapphire
80(1)
5.4 Population of the Upper Laser Level
81(1)
5.5 Heat and Phonons
82(3)
Problems
82(3)
Part II Theoretical Basis of the Laser
6 Basis of the Theory of the Laser: The Einstein Coefficients
85(12)
6.1 Light and Atoms in a Cavity
85(2)
6.2 Spontaneous Emission
87(1)
6.3 Absorption
88(1)
6.4 Stimulated Emission
88(1)
6.5 The Einstein Relations
89(3)
6.6 Einstein Coefficients on the Energy Scale
92(1)
6.7 Stimulated Versus Spontaneous Emission
92(2)
6.8 Transition Probabilities
94(1)
6.9 Determination of Einstein Coefficients from Wave Functions
95(2)
Problems
96(1)
7 Amplification of Coherent Radiation
97(22)
7.1 Interaction of Monochromatic Radiation with an Ensemble of Two-Level Systems
98(2)
7.2 Growth and Gain Coefficient
100(3)
7.3 Gain Cross Section
103(3)
7.4 An Effective Gain Cross Section
106(2)
7.5 Gain Coefficients
108(1)
7.6 Gain Coefficient of Titanium--Sapphire
109(2)
7.7 Gain Coefficient of a Medium with an Inhomogeneously Broadened Line
111(1)
7.8 Gain Characteristic of a Two-Dimensional Medium
112(2)
7.9 Gain of Light Crossing a Two-Dimensional Medium
114(5)
Problems
115(4)
8 A Laser Theory
119(18)
8.1 Rate Equations
119(2)
8.2 Steady State Oscillation of a Laser
121(2)
8.3 Balance Between Production and Loss of Photons
123(1)
8.4 Onset of Laser Oscillation
124(2)
8.5 Clamping of Population Difference
126(1)
8.6 Optimum Output Coupling
127(3)
8.7 Two Laser Rate Equations
130(1)
8.8 Relaxation Oscillation
131(2)
8.9 Laser Linewidth
133(4)
Problems
136(1)
9 Driving a Laser Oscillation
137(44)
9.1 Maxwell's Equations
138(4)
9.2 Possibilities of Driving a Laser Oscillation
142(1)
9.3 Polarization of an Atomic Medium
142(3)
9.4 Quantum Mechanical Expression of the Susceptibility of an Atomic Medium
145(4)
9.5 Polarization of an Active Medium
149(2)
9.6 Polarization Current
151(3)
9.7 Laser Oscillation Driven by a Polarization
154(8)
9.8 Relaxation of the Polarization
162(2)
9.9 Laser Equations
164(4)
9.10 Laser-van der Pol Equation
168(2)
9.11 Kramers--Kronig Relations
170(1)
9.12 Lorentz Functions: A Survey
171(1)
9.13 A Third Remark About the History of the Laser
172(9)
Problems
175(6)
Part III Operation of a Laser
10 Cavity Resonator
181(14)
10.1 Cavity Resonators in Various Areas
181(1)
10.2 Modes of a Cavity Resonator
182(4)
10.3 Modes of a Long Cavity Resonator
186(1)
10.4 Density of Modes of a Cavity Resonator
187(2)
10.5 Fresnel Number
189(1)
10.6 TE Waves and TM Waves
190(1)
10.7 Quasioptical Arrangement
191(4)
Problems
192(3)
11 Gaussian Waves and Open Resonators
195(40)
11.1 Open Resonator
196(2)
11.2 Helmholtz Equation
198(2)
11.3 Gaussian Wave
200(7)
11.4 Confocal Resonator
207(3)
11.5 Stability of a Field in a Resonator
210(4)
11.6 Transverse Modes
214(5)
11.7 The Gouy Phase
219(4)
11.8 Diffraction Loss
223(2)
11.9 Ray Optics
225(10)
Problems
231(4)
12 Different Ways of Operating a Laser
235(10)
12.1 Possibilities of Operating a Laser
235(1)
12.2 Operation of a Laser on Longitudinal Modes
236(1)
12.3 Single Mode Laser
236(1)
12.4 Tunable Laser
237(1)
12.5 Spectral Hole Burning in Lasers Using Inhomogeneously Broadened Transitions
238(1)
12.6 Q-Switched Lasers
239(2)
12.7 Longitudinal and Transverse Pumping
241(1)
12.8 An Application of CW Lasers: The Optical Tweezers
242(1)
12.9 Another Application: Gravitational Wave Detector
243(2)
Problems
244(1)
13 Femtosecond Laser
245(26)
13.1 Mode Locking
246(5)
13.2 Active and Passive Mode Locking
251(2)
13.3 Onset of Oscillation of a Mode-Locked Titanium-Sapphire Laser
253(1)
13.4 Optical Frequency Comb
254(5)
13.5 Optical Correlator
259(2)
13.6 Pump-Probe Method
261(1)
13.7 Femtosecond Pulses in Chemistry
261(1)
13.8 Optical Frequency Analyzer
262(1)
13.9 Terahertz Time Domain Spectroscopy
263(2)
13.10 Attosecond Pulses
265(6)
Problems
266(5)
Part IV Types of Lasers (Except Semiconductor Lasers)
14 Gas Lasers
271(20)
14.1 Doppler Broadening of Spectral Lines
271(2)
14.2 Collision Broadening
273(2)
14.3 Helium--Neon Laser
275(2)
14.4 Metal Vapor Laser
277(1)
14.5 Argon Ion Laser
278(1)
14.6 Excimer Laser
279(1)
14.7 Nitrogen Laser
280(1)
14.8 CO2 Laser
281(3)
14.9 Other Gas Discharge Lasers and Optically Pumped Far Infrared Lasers
284(7)
Problems
286(5)
15 Solid State Lasers
291(18)
15.1 Ruby Laser
291(1)
15.2 More About the Titanium--Sapphire Laser
292(3)
15.3 Other Broadband Solid State Lasers
295(1)
15.4 YAG Lasers
296(2)
15.5 Different Neodymium Lasers
298(1)
15.6 Disk Lasers
299(1)
15.7 Fiber Lasers
300(2)
15.8 A Short Survey of Solid State Lasers and Impurity Ions in Solids
302(4)
15.9 Broadening of Transitions in Impurity Ions in Solids
306(3)
Problems
307(2)
16 Some Other Lasers and Laser Amplifiers
309(8)
16.1 Dye Laser
309(2)
16.2 Solid State and Thin-Film Dye Laser
311(1)
16.3 Chemical Laser
311(1)
16.4 X-Ray Laser
312(1)
16.5 Random Laser
313(1)
16.6 Optically Pumped Organic Lasers
313(1)
16.7 Laser Tandem
313(1)
16.8 High-Power Laser Amplifier
313(1)
16.9 Fiber Amplifier
314(1)
16.10 Optical Damage
314(1)
16.11 Gain Units
315(2)
Problems
315(2)
17 Vibronic Medium
317(8)
17.1 Model of a Vibronic System
317(2)
17.2 Gain Coefficient of a Vibronic Medium
319(2)
17.3 Frequency Modulation of a Two-Level System
321(3)
17.4 Vibronic Sideband as a Homogeneously Broadened Line
324(1)
Problem
324(1)
18 Amplification of Radiation in a Doped Glass Fiber
325(22)
18.1 Survey of the Erbium-Doped Fiber Amplifier
326(2)
18.2 Energy Levels of Erbium Ions in Glass and Quasiband Model
328(3)
18.3 Quasi-Fermi Energy of a Gas of Excited-Impurity Quasiparticles
331(2)
18.4 Condition of Gain of Light Propagating in a Fiber
333(1)
18.5 Energy Level Broadening
334(2)
18.6 Calculation of the Gain Coefficient of a Doped Fiber
336(3)
18.7 Different Effective Gain Cross Sections
339(2)
18.8 Absorption and Fluorescence Spectra of an Erbium-Doped Fiber
341(1)
18.9 Experimental Studies and Models of Doped Fiber Media
342(5)
Problems
344(3)
19 Free-Electron Laser
347(68)
19.1 Principle of the Free-Electron Laser
348(3)
19.2 Free-Electron Laser Arrangements
351(2)
19.3 Free-Electron Oscillation: Resonance Frequency and Spontaneously Emitted Radiation
353(5)
19.4 Data of a Free-Electron Laser
358(2)
19.5 Rigid Coupling of Transverse and Longitudinal Oscillation of an Electron
360(2)
19.6 High Frequency Transverse Currents
362(3)
19.7 Modulation Model of the Free-Electron Laser
365(6)
19.8 Saturation Field and Energy of Distortion
371(2)
19.9 Critical Modulation Index
373(2)
19.10 Modulation Model and Data of Free-Electron Lasers
375(4)
19.11 Modulation Model and SASE Free-Electron Lasers
379(2)
19.12 Onset of Oscillation of a Free-Electron Laser
381(3)
19.13 Phase Between Electron Oscillation and Optical Field
384(3)
19.14 Optical Constants of a Free-Electron Laser Medium
387(1)
19.15 Mode Locked Free-Electron Laser
388(2)
19.16 Electron Bunching
390(1)
19.17 Energy-Level Description of a Free-Electron Laser Medium
391(7)
19.18 Aspects of Free-Electron Laser Theory
398(3)
19.19 Comparison of a Free-Electron Laser with a Conventional Laser
401(4)
19.20 Remark About the History of the Free-Electron Laser
405(10)
Problems
406(9)
Part V Semiconductor Lasers
20 An Introduction to Semiconductor Lasers
415(12)
20.1 Energy Bands of Semiconductors
416(2)
20.2 Low-Dimensional Semiconductors
418(1)
20.3 An Estimate of the Transparency Density
419(1)
20.4 Bipolar and Unipolar Semiconductor Lasers
420(2)
20.5 Edge-Emitting Bipolar Semiconductor Lasers
422(1)
20.6 Survey of Topics Concerning Semiconductor Lasers
423(1)
20.7 Frequency Ranges of Semiconductor Lasers
424(1)
20.8 Energy Band Engineering
425(1)
20.9 Differences Between Semiconductor Lasers and Other Lasers
425(2)
Problems
426(1)
21 Basis of a Bipolar Semiconductor Laser
427(30)
21.1 Principle of a Bipolar Semiconductor Laser
428(1)
21.2 Condition of Gain of Radiation in a Bipolar Semiconductor
429(4)
21.3 Energy Level Broadening
433(1)
21.4 Reduced Density of States
434(3)
21.5 Growth Coefficient and Gain Coefficient of a Bipolar Medium
437(2)
21.6 Spontaneous Emission
439(1)
21.7 Laser Equations of a Bipolar Semiconductor Laser
440(3)
21.8 Gain Mediated by a Quantum Well
443(5)
21.9 Laser Equations of a Quantum Well Laser
448(2)
21.10 What Is Meant by "Bipolar"?
450(7)
Problems
453(4)
22 GaAs Quantum Well Laser
457(18)
22.1 GaAs Quantum Well
458(1)
22.2 An Active Quantum Well
459(7)
22.3 GaAs Quantum Well Laser
466(3)
22.4 Threshold Current of a GaAs Quantum Well Laser
469(2)
22.5 Multi-Quantum Well Laser
471(1)
22.6 High-Power Semiconductor Laser
471(1)
22.7 Vertical-Cavity Surface-Emitting Laser
472(1)
22.8 Polarization of Radiation of a Quantum Well Laser
473(1)
22.9 Luminescence Radiation from a Quantum Well
473(2)
Problems
474(1)
23 Semiconductor Materials and Heterostructures
475(10)
23.1 Group III--V and Group II--VI Semiconductors
475(2)
23.2 GaAlAs Mixed Crystal
477(1)
23.3 GaAs Crystal and Monolayer
478(1)
23.4 GaAs/GaAlAs Heterostructure
478(1)
23.5 Preparation of Heterostructures
479(1)
23.6 Preparation of Laser Diodes
480(1)
23.7 Material Limitations
480(1)
23.8 Energy Bands and Absorption Coefficients of GaAs and AlAs
481(4)
Problems
482(3)
24 Quantum Well Lasers from the UV to the Infrared
485(6)
24.1 A Survey
485(1)
24.2 Red and Infrared Laser Diodes
485(2)
24.3 Blue and UV Laser Diodes
487(1)
24.4 Group II--VI Materials of Green Lasers
488(1)
24.5 Applications of Semiconductor Lasers
489(2)
Problems
490(1)
25 Reflectors of Quantum Well Lasers and of Other Lasers
491(20)
25.1 Plane Surface
491(1)
25.2 Coated Surface
492(1)
25.3 External Reflector
493(1)
25.4 Distributed Feedback Reflector
493(1)
25.5 Distributed Bragg Reflector
493(1)
25.6 Total Reflector
493(1)
25.7 Bragg Reflector
494(1)
25.8 Photonic Crystal
495(1)
25.9 Photonic Crystal Fiber
496(1)
25.10 Remark About Photonic Crystals
497(1)
25.11 Plane-Wave Transfer Matrix Method Characterizing an Optical Interface
497(2)
25.12 Thin Film Between Two Media
499(1)
25.13 Dielectric Multilayer
500(1)
25.14 One-Dimensional Photonic Crystal
501(4)
25.15 Bragg Reflection as Origin of Energy Gaps
505(6)
Problems
506(5)
26 More About the Quantum Well Laser
511(10)
26.1 Electron Subbands
511(4)
26.2 Hole Subbands
515(1)
26.3 Modification of the Gain Characteristic by Light Holes
516(1)
26.4 Gap Energy of a Quantum Well
517(1)
26.5 Temperature Dependence of the Threshold Current Density of a GaAs Quantum Well Laser
517(1)
26.6 Gain Mediated by a Quantum Well with Inhomogeneous Well Thickness
517(1)
26.7 Tunability of a Quantum Well Laser
518(1)
26.8 Anisotropy of a Quantum Well
518(3)
Problems
518(3)
27 Quantum Wire and Quantum Dot Laser
521(12)
27.1 Quantum Wire Laser
521(1)
27.2 Quantum Wire
522(3)
27.3 Gain Mediated by a Quantum Wire
525(1)
27.4 Multi Quantum Wire Laser
526(2)
27.5 Quantum Dot
528(1)
27.6 Quantum Dot Laser
529(2)
27.7 One-Quantum Dot Laser
531(2)
Problems
532(1)
28 A Comparison of Semiconductor Lasers
533(12)
28.1 Gain of Radiation in a Bulk Semiconductor
534(2)
28.2 Double Heterostructure Laser
536(1)
28.3 GaAs Junction Laser
537(1)
28.4 Junction Lasers in the Infrared
538(1)
28.5 Bipolar Semiconductor Lasers: A Comparison
538(2)
28.6 Development of Semiconductor Lasers
540(2)
28.7 Terahertz Gap
542(3)
Problems
543(2)
29 Quantum Cascade Laser
545(8)
29.1 Principle of the Quantum Cascade Laser
546(1)
29.2 Infrared Quantum Cascade Laser
547(1)
29.3 Semiconductor Superlattice and Minibands
548(1)
29.4 Transport in a Superlattice
549(1)
29.5 Far Infrared Quantum Cascade Laser
550(3)
Problems
550(3)
30 Electron Waves in Semiconductor Heterostructures
553(14)
30.1 Electron in a One-Dimensional Square Well Potential
553(3)
30.2 Energy Bands of Electrons in a Periodic Square Well Potential
556(3)
30.3 Plane-Wave Transfer Matrix Method of Characterizing a Semiconductor Interface
559(2)
30.4 Minibands
561(3)
30.5 Quantum Well
564(1)
30.6 Double-Quantum Well
564(3)
Problems
564(3)
31 A Comparison of Laser Oscillators and Quasiclassical Solid State Oscillators
567(24)
31.1 Interaction of Radiation with an Active Medium of a Laser or a Quasiclassical Oscillator
568(1)
31.2 Solid State Oscillators
569(1)
31.3 Semiconductor Superlattice Oscillator
570(2)
31.4 Model of a Solid State Oscillator
572(4)
31.5 Dynamics of Gain Mediated by a Semiconductor Superlattice
576(5)
31.6 Balance of Energy in a Superlattice Oscillator
581(2)
31.7 Resonant-Tunneling Diode Oscillator
583(1)
31.8 Van der Pol Oscillator
584(7)
Problems
588(3)
32 Superlattice Bloch Laser: A Challenge
591(32)
32.1 Principle of a Superlattice Bloch Laser
592(4)
32.2 Bloch Oscillation
596(3)
32.3 Esaki-Tsu Characteristic
599(2)
32.4 Modulation Model of a Bloch Laser
601(5)
32.5 Saturation Field of a Bloch Laser
606(3)
32.6 Energy of Distortion in a Bloch Laser
609(1)
32.7 Synchronization of Bloch Oscillations to a High Frequency Field
610(2)
32.8 Energy-Level Description of the Superlattice Bloch Laser
612(5)
32.9 Possible Arrangements of a Bloch Laser
617(1)
32.10 References to the Bloch Laser and Discussion
618(5)
Problems
619(4)
Part VI Laser Related Topics
33 Optical Communications
623(6)
33.1 Principle of Optical Communications
623(1)
33.2 Glass Fiber
624(1)
33.3 Pulse Distortion Due to Dispersion
625(1)
33.4 Erbium-Doped Fiber Amplifier
626(1)
33.5 Detector
627(1)
33.6 Transfer Rates
627(2)
Problems
628(1)
34 Light Emitting Diode and Organic Laser
629(6)
34.1 LED Preparation and Market
629(1)
34.2 Illumination
630(1)
34.3 Organic LED
631(2)
34.4 Organic and Polymer Lasers
633(2)
Problems
634(1)
35 Nonlinear Optics
635(10)
35.1 Optics and Nonlinear Optics
635(1)
35.2 Origin of Nonlinear Polarization
636(1)
35.3 Optical Frequency Doubler
637(1)
35.4 Difference Frequency Generator
638(1)
35.5 Optical Parametric Oscillator
639(1)
35.6 Third-Order Polarization
640(1)
35.7 Four-Wave Mixing and Optical Frequency Analyzer
641(2)
35.8 Stimulated Raman Scattering
643(2)
Problems
644(1)
Solutions to Selected Problems 645(12)
References 657(10)
Index 667
Karl F. Renk received a diploma degree (1962) and a Ph.D. (1966) in physics from the Universität Freiburg, Germany. He worked as a Senior Research Physicist at the University Reading, Great Britain (1966/67) and as Wissenschaftlicher Assistant at the Technische Universität München (1967-72). From 1972 to 2006, he was a Professor of Physics at the Universität Regensburg, Germany, and since 2006, Professor Emeritus. He had visiting appointments at the Research Center Jülich (1974), High-Field Magnet Laboratory of the Max-Planck Society, Grenoble (1976), University of California, Los Angeles (1980/81), Université Scientific et Médicale de Grenoble (1985/86), and at the University of Canterbury, Christchurch, New Zealand (1992) as a New Zealand Erskine Fellow. Professor Renk is a fellow of the American Physical Society, the Deutsche Physikalische Gesellschaft, and the Gesellschaft Deutscher Naturforscher und Ärzte. He developed the first Fabry-Perot interferometer for the far infrared (1962), later far infrared lasers and, finally, millimeter wave devices based on semiconductor superlattices and applied the techniques together with optical laser techniques to study dynamical processes of low-energy excitations in solids. The work is documented in about 250 scientific publications.