Atjaunināt sīkdatņu piekrišanu

Basics of Laser Physics: For Students of Science and Engineering 2012 [Hardback]

  • Formāts: Hardback, 622 pages, height x width: 235x155 mm, weight: 1118 g, XVIII, 622 p., 1 Hardback
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 10-Feb-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642235646
  • ISBN-13: 9783642235641
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 622 pages, height x width: 235x155 mm, weight: 1118 g, XVIII, 622 p., 1 Hardback
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 10-Feb-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642235646
  • ISBN-13: 9783642235641
Citas grāmatas par šo tēmu:

Laser Physics provides an introductory presentation of the field of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers and, furthermore, with a few laser related topics. The different subjects are connected to each other by the central principle of the laser, namely, that it is a self-oscillating system. Special emphasis is put on a uniform treatment of gas and solid-state lasers, on the one hand, and semiconductor lasers, on the other hand. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses undergraduate and graduate students of science and engineering. Not only should it enable instructors to prepare their lectures, but it can be helpful to students for preparing for an examination.

Part I General Description of a Laser and an Example
1 Introduction
3(14)
1.1 Laser and Light Bulb
3(1)
1.2 Spectral Ranges of Lasers and List of a Few Lasers
4(2)
1.3 Laser Safety
6(1)
1.4 Sizes of Lasers, Cost of Lasers, and Laser Market
6(2)
1.5 Questions About the Laser
8(1)
1.6 Different Types of Lasers in the Same Spectral Range
9(1)
1.7 Concept of the Book
9(2)
1.8 References
11(1)
1.9 A Remark about the History of the Laser
11(6)
Problems
14(3)
2 Laser Principle
17(26)
2.1 A Laser
18(1)
2.2 Coherent Electromagnetic Wave
18(4)
2.3 An Active Medium
22(4)
2.4 Laser Resonator
26(5)
2.5 Laser = Laser Oscillator
31(1)
2.6 Radiation Feedback and Threshold Condition
32(2)
2.7 Frequency of Laser Oscillation
34(1)
2.8 Data of Lasers
35(3)
2.9 Oscillation Onset Time
38(5)
Problems
39(4)
3 Fabry-Perot Resonator
43(12)
3.1 Laser Resonators and Laser Mirrors
43(2)
3.2 V Factor and Related Quantities
45(1)
3.3 Number of Photons in a Resonator Mode
46(1)
3.4 Ideal Mirror
47(1)
3.5 Fabry-Perot Interferometer
48(2)
3.6 Resonance Curve of a Fabry-Perot Resonator
50(2)
3.7 Fabry-Perot Resonator Containing a Gain Medium
52(3)
Problems
53(2)
4 The Active Medium: Energy Levels and Lineshape Functions
55(20)
4.1 Two-Level Based and Energy-Ladder Based Lasers
56(1)
4.2 Four-Level, Three-Level, and Two-Level Lasers
57(2)
4.3 Two-Band Laser and Quasiband Laser
59(2)
4.4 Energy-Ladder Based Laser
61(1)
4.5 Lineshape: Homogeneous and Inhomogeneous Line Broadening
61(2)
4.6 Lorentz Functions
63(3)
4.7 Gaussian Lineshape Function
66(1)
4.8 Experimental Linewidths
67(1)
4.9 Classical Oscillator Model of an Atom
68(2)
4.10 Natural Line Broadening
70(1)
4.11 Energy and Phase Relaxation
70(1)
4.12 Three-Dimensional and Low-Dimensional Active Media
71(4)
Problems
72(3)
5 Titanium-Sapphire Laser
75(8)
5.1 Principle of the Titanium-Sapphire Laser
75(2)
5.2 Design of a Titanium-Sapphire Laser
77(1)
5.3 Absorption and Fluorescence Spectra of Titanium-Sapphire
78(1)
5.4 Population of the Upper Laser Level
79(1)
5.5 Heat and Phonons
80(3)
Problems
80(3)
Part II Theoretical Basis of the Laser
6 Basis of the Theory of the Laser: The Einstein Coefficients
83(12)
6.1 Light and Atoms in a Cavity
83(2)
6.2 Spontaneous Emission
85(1)
6.3 Absorption
86(1)
6.4 Stimulated Emission
86(1)
6.5 The Einstein Relations
86(3)
6.6 Einstein Coefficients on the Energy Scale
89(1)
6.7 Stimulated Versus Spontaneous Emission
90(2)
6.8 Determination of Einstein Coefficients from Wave Functions
92(3)
Problems
93(2)
7 Amplification of Coherent Radiation
95(22)
7.1 Interaction of Monochromatic Radiation with an Ensemble of Two-Level Systems
96(2)
7.2 Growth and Gain Coefficient
98(3)
7.3 Gain Cross Section
101(2)
7.4 An Effective Gain Cross Section
103(2)
7.5 Gain Coefficients
105(2)
7.6 Gain Coefficient of Titanium-Sapphire
107(2)
7.7 Gain Coefficient of a Medium with an Inhomogeneously Broadened Line
109(1)
7.8 Gain Characteristic of a Two-Dimensional Medium
109(2)
7.9 Gain of Light Crossing a Two-Dimensional Medium
111(6)
Problems
112(5)
8 A Laser Theory
117(18)
8.1 Rate Equations
117(2)
8.2 Steady State Oscillation of a Laser
119(2)
8.3 Balance Between Production and Loss of Photons
121(1)
8.4 Onset of Laser Oscillation
122(2)
8.5 Clamping of the Population Difference
124(1)
8.6 Optimum Output Coupling
125(2)
8.7 Two Laser Equations
127(2)
8.8 Relaxation Oscillation
129(2)
8.9 Laser Linewidth
131(4)
Problems
133(2)
9 Driving a Laser Oscillation
135(38)
9.1 Maxwell's Equations
136(4)
9.2 Possibilities of Driving a Laser Oscillation
140(1)
9.3 Polarization of an Atomic Medium
140(3)
9.4 Quantum Mechanical Expression for the Susceptibility of an Atomic Medium
143(4)
9.5 Polarization of an Active Medium
147(2)
9.6 Polarization Current
149(2)
9.7 Laser Oscillation Driven by a Polarization
151(9)
9.8 Laser Equations
160(4)
9.9 Kramers-Kronig Relations
164(1)
9.10 Another Remark about the History of the Laser
165(8)
Problems
168(5)
Part III Operation of a Laser
10 Cavity Resonator
173(14)
10.1 Cavity Resonators in Various Areas
173(1)
10.2 Modes of a Cavity Resonator
174(3)
10.3 Modes of a Long Cavity Resonator
177(2)
10.4 Density of Modes of a Cavity Resonator
179(2)
10.5 Fresnel Number
181(1)
10.6 TE Waves and TM Waves
182(1)
10.7 Quasioptical Arrangement
183(4)
Problems
183(4)
11 Gaussian Waves and Open Resonators
187(38)
11.1 Open Resonator
188(2)
11.2 Helmholtz Equation
190(2)
11.3 Gaussian Wave
192(7)
11.4 Confocal Resonator
199(3)
11.5 Stability of a Field in a Resonator
202(4)
11.6 Transverse Modes
206(4)
11.7 The Gouy Phase
210(5)
11.8 Diffraction Loss
215(2)
11.9 Ray Optics
217(8)
Problems
222(3)
12 Different Ways of Operating a Laser
225(10)
12.1 Possibilities of Operating a Laser
225(1)
12.2 Operation of a Laser on Longitudinal Modes
226(1)
12.3 Single Mode Laser
226(1)
12.4 Tunable Laser
227(1)
12.5 Spectral Hole Burning in Lasers Using Inhomogeneously Broadened Transitions
228(1)
12.6 Q-Switched Lasers
229(2)
12.7 Longitudinal and Transverse Pumping
231(1)
12.8 An Application of CW Lasers: The Optical Tweezers
231(2)
12.9 Another Application: Gravitational Wave Detector
233(2)
Problems
234(1)
13 Femtosecond Laser
235(24)
13.1 Mode Locking
236(5)
13.2 Active and Passive Mode Locking
241(2)
13.3 Optical Frequency Comb
243(5)
13.4 Optical Correlator
248(1)
13.5 Pump-Probe Method
249(1)
13.6 Femtosecond Pulses in Chemistry
250(1)
13.7 Optical Frequency Analyzer
251(1)
13.8 Terahertz Time Domain Spectroscopy
252(2)
13.9 Attosecond Pulses
254(5)
Problems
254(5)
Part IV Types of Lasers (Except Semiconductor Lasers)
14 Gas Lasers
259(20)
14.1 Doppler Broadening of Spectral Lines
259(2)
14.2 Collision Broadening
261(1)
14.3 Helium-Neon Laser
262(3)
14.4 Metal Vapor Laser
265(1)
14.5 Argon Ion Laser
266(1)
14.6 Excimer Laser
267(1)
14.7 Nitrogen Laser
268(1)
14.8 CO2 Laser
269(3)
14.9 Other Gas Discharge Lasers and Optically Pumped Far Infrared Lasers
272(7)
Problems
274(5)
15 Solid State Lasers
279(18)
15.1 Ruby Laser
279(1)
15.2 More about the Titanium-Sapphire Laser
280(3)
15.3 Other Broadband Solid State Lasers
283(1)
15.4 YAG Lasers
284(2)
15.5 Different Neodymium Lasers
286(1)
15.6 Disk Lasers
286(1)
15.7 Fiber Lasers
287(3)
15.8 A Short Survey of Solid State Lasers and Impurity Ions in Solids
290(4)
15.9 Broadening of Transitions in Impurity Ions in Solids
294(3)
Problems
295(2)
16 Some Other Lasers and Laser Amplifiers
297(8)
16.1 Dye Laser
297(2)
16.2 Solid State and Thin-Film Dye Laser
299(1)
16.3 Chemical Laser
299(1)
16.4 X-Ray Laser
300(1)
16.5 Random Laser
301(1)
16.6 Optically Pumped Organic Lasers
301(1)
16.7 Laser Tandem
301(1)
16.8 High-Power Laser Amplifier
301(1)
16.9 Fiber Amplifier
302(1)
16.10 Optical Damage
302(1)
16.11 Gain Units
303(2)
Problems
303(2)
17 Vibronic Medium
305(8)
17.1 Model of a Vibronic System
305(2)
17.2 Gain Coefficient of a Vibronic Medium
307(2)
17.3 Frequency Modulation of a Two-Level System
309(2)
17.4 Vibronic Sideband as a Homogeneously Broadened Line
311(2)
Problems
312(1)
18 Amplification of Radiation in a Doped Glass Fiber
313(20)
18.1 Survey of the Erbium-Doped Fiber Amplifier
314(1)
18.2 Energy Levels of Erbium Ions in Glass and Quasiband Model
315(4)
18.3 Quasi-Fermi Energy of a Gas of Excited-Impurity Quasiparticles
319(2)
18.4 Condition of Gain of Light Propagating in a Fiber
321(1)
18.5 Energy Level Broadening
322(2)
18.6 Calculation of the Gain Coefficient of a Doped Fiber
324(3)
18.7 Different Effective Gain Cross Sections
327(1)
18.8 Absorption and Fluorescence Spectra of an Erbium-Doped Fiber
328(2)
18.9 Experimental Studies and Models of Doped Fiber Media
330(3)
Problems
331(2)
19 Free-Electron Laser
333(38)
19.1 Principle of the Free-Electron Laser
334(3)
19.2 Free-Electron Laser Arrangements
337(2)
19.3 Frequency of Free-Electron Oscillations
339(4)
19.4 Free-Electron Laser Theory
343(2)
19.5 Data of a Free-Electron Laser
345(2)
19.6 High Frequency Transverse Polarization and Current
347(2)
19.7 Free-Electron Oscillations
349(4)
19.8 Saturation Field of a Free-Electron Laser
353(3)
19.9 Optical Constants of a Free-Electron Laser Medium
356(1)
19.10 Bunching of Electrons in a Free-Electron Laser
357(3)
19.11 Energy-Level Description of a Free-Electron Laser Medium
360(5)
19.12 Comparison of a Free-Electron Laser with a Conventional Laser
365(1)
19.13 A Remark about the History of the Free-Electron Laser
366(5)
Problems
366(5)
Part V Semiconductor Lasers
20 An Introduction to Semiconductor Lasers
371(12)
20.1 Energy Bands of Semiconductors
372(2)
20.2 Low-Dimensional Semiconductors
374(1)
20.3 An Estimate of the Transparency Density
375(1)
20.4 Bipolar and Unipolar Semiconductor Lasers
376(1)
20.5 Edge-Emitting Bipolar Semiconductor Laser
377(1)
20.6 Survey of Topics Concerning Semiconductor Lasers
378(2)
20.7 Frequency Ranges of Semiconductor Lasers
380(1)
20.8 Energy Band Engineering
381(1)
20.9 Differences Between Semiconductor Lasers and Other Lasers
381(2)
Problems
382(1)
21 Basis of a Bipolar Semiconductor Laser
383(28)
21.1 Principle of a Bipolar Semiconductor Laser
384(1)
21.2 Condition of Gain of Radiation in a Bipolar Semiconductor
385(4)
21.3 Energy Level Broadening
389(1)
21.4 Reduced Density of States
390(2)
21.5 Growth Coefficient and Gain Coefficient of a Bipolar Medium
392(3)
21.6 Spontaneous Emission
395(1)
21.7 Laser Equations of a Bipolar Semiconductor Laser
396(3)
21.8 Gain Mediated by a Quantum Well
399(5)
21.9 Laser Equations of a Quantum Well Laser
404(2)
21.10 What is Meant by "Bipolar"?
406(5)
Problems
408(3)
22 GaAs Quantum Well Laser
411(18)
22.1 GaAs Quantum Well
412(1)
22.2 An Active Quantum Well
413(7)
22.3 GaAs Quantum Well Laser
420(2)
22.4 Threshold Current of a GaAs Quantum Well Laser
422(2)
22.5 Multi-Quantum Well Laser
424(1)
22.6 High-Power Semiconductor Laser
424(1)
22.7 Vertical-Cavity Surface-Emitting Laser
425(2)
22.8 Polarization of Radiation of a Quantum Well Laser
427(1)
22.9 Luminescence Radiation from a Quantum Well
427(2)
Problems
428(1)
23 Semiconductor Materials and Heterostructures
429(10)
23.1 Group III-V and Group II-VI Semiconductors
429(2)
23.2 GaAlAs Mixed Crystal
431(1)
23.3 GaAs Crystal and Monolayer
431(1)
23.4 GaAs/GaAlAs Heterostructure
432(1)
23.5 Preparation of Heterostructures
433(1)
23.6 Preparation of Laser Diodes
434(1)
23.7 Material Limitations
434(1)
23.8 Energy Bands and Absorption Coefficients of GaAs and AlAs
434(5)
Problems
436(3)
24 Quantum Well Lasers from the UV to the Infrared
439(6)
24.1 A Survey
439(1)
24.2 Red and Infrared Laser Diodes
439(2)
24.3 Blue and UV Laser Diodes
441(1)
24.4 Group II-VI Materials of Green Lasers
442(1)
24.5 Applications of Semiconductor Lasers
443(2)
Problems
444(1)
25 Reflectors of Quantum Well Lasers and of Other Lasers
445(18)
25.1 Plane Surface
445(1)
25.2 Coated Surface
446(1)
25.3 External Reflector
446(1)
25.4 Distributed Feedback Reflector
447(1)
25.5 Distributed Bragg Reflector
447(1)
25.6 Total Reflector
447(1)
25.7 Bragg Reflector
448(1)
25.8 Photonic Crystal
448(2)
25.9 Photonic Crystal Fiber
450(1)
25.10 Remark About Photonic Crystals
451(1)
25.11 Plane-Wave Transfer Matrix Method Characterizing an Optical Interface
451(1)
25.12 Thin Film Between Two Media
452(1)
25.13 Dielectric Multilayer
453(1)
25.14 One-Dimensional Photonic Crystal
454(5)
25.15 Bragg Reflection as Origin of Energy Gaps
459(4)
Problems
460(3)
26 More About the Quantum Well Laser
463(8)
26.1 Electron Subbands
463(3)
26.2 Hole Subbands
466(2)
26.3 Modification of the Gain Characteristic by Light Holes
468(1)
26.4 Gap Energy of a Quantum Well
468(1)
26.5 Temperature Dependence of the Threshold Current Density of a GaAs Quantum Well Laser
469(1)
26.6 Gain Mediated by a Quantum Well of Inhomogeneous Well Thickness
469(1)
26.7 Tunability of a Quantum Well Laser
470(1)
26.8 Anisotropy of a Quantum Well
470(1)
Problems
470(1)
27 Quantum Wire and Quantum Dot Laser
471(12)
27.1 Quantum Wire Laser
471(1)
27.2 Quantum Wire
472(3)
27.3 Gain Mediated by a Quantum Wire
475(1)
27.4 Multi-Quantum Wire Laser
476(2)
27.5 Quantum Dot
478(1)
27.6 Quantum Dot Laser
479(1)
27.7 One-Quantum Dot Laser
480(3)
Problems
482(1)
28 A Comparison of Semiconductor Lasers
483(12)
28.1 Gain of Radiation in a Bulk Semiconductor
484(2)
28.2 Double-Heterostructure Laser
486(1)
28.3 GaAs Junction Laser
487(1)
28.4 Junction Lasers in the Infrared
488(1)
28.5 Bipolar Semiconductor Lasers: A Comparison
488(2)
28.6 Development of Semiconductor Lasers
490(2)
28.7 Terahertz Gap
492(3)
Problems
493(2)
29 Quantum Cascade Laser
495(6)
29.1 Principle of the Quantum Cascade Laser
496(1)
29.2 Infrared Quantum Cascade Laser
497(1)
29.3 Semiconductor Superlattice and Minibands
498(1)
29.4 Transport in a Superlattice
499(1)
29.5 Far Infrared Quantum Cascade Laser
499(2)
Problems
500(1)
30 Electron Waves in Semiconductor Heterostructures
501(14)
30.1 Electron in a One-Dimensional Square Well Potential
501(3)
30.2 Energy Bands of Electrons in a Periodic Square Well Potential
504(3)
30.3 Plane-Wave Transfer Matrix Method Characterizing a Semiconductor Interface
507(2)
30.4 Minibands
509(3)
30.5 Quantum Well
512(1)
30.6 Double-Quantum Well
512(3)
Problems
512(3)
31 A Comparison of Laser Oscillators and Quasiclassical Solid State Oscillators
515(24)
31.1 Interaction of Radiation with an Active Medium of a Laser or a Quasiclassical Oscillator
516(1)
31.2 Solid State Oscillators
517(1)
31.3 Semiconductor Superlattice Oscillator
518(2)
31.4 Model of a Solid State Oscillator
520(4)
31.5 Dynamics of Gain Mediated by a Semiconductor Superlattice
524(5)
31.6 Balance of Energy in a Superlattice Oscillator
529(2)
31.7 Resonant-Tunneling Diode Oscillator
531(1)
31.8 Van der Pol Oscillator
532(7)
Problems
536(3)
32 Superlattice Bloch Laser: A Challenge
539(28)
32.1 Principle of a Superlattice Bloch Laser
540(2)
32.2 Bloch Oscillation
542(4)
32.3 Esaki-Tsu Characteristic
546(2)
32.4 Bloch Gain
548(5)
32.5 Saturation Field of a Bloch Laser
553(1)
32.6 Synchronization of Bloch Oscillations to a High Frequency Field
554(2)
32.7 Energy-Level Description of the Superlattice Bloch Laser
556(4)
32.8 Possible Arrangements of a Bloch Laser
560(1)
32.9 References to the Bloch Laser and Discussion
560(7)
Problems
562(5)
Part VI Laser Related Topics
33 Optical Communications
567(6)
33.1 Principle of Optical Communications
567(1)
33.2 Glass Fiber
568(1)
33.3 Pulse Distortion due to Dispersion
569(1)
33.4 Erbium-Doped Fiber Amplifier
570(1)
33.5 Detector
571(1)
33.6 Transfer Rates
571(2)
Problems
572(1)
34 Light Emitting Diode and Organic Laser
573(6)
34.1 LED Preparation and Market
573(1)
34.2 Illumination
574(1)
34.3 Organic LED
575(2)
34.4 Organic and Polymer Lasers
577(2)
Problems
578(1)
35 Nonlinear Optics
579(10)
35.1 Optics and Nonlinear Optics
579(1)
35.2 Origin of Nonlinear Polarization
580(1)
35.3 Optical Frequency Doubler
581(1)
35.4 Difference Frequency Generator
582(1)
35.5 Optical Parametric Oscillator
583(1)
35.6 Third-Order Polarization
584(1)
35.7 Four-Wave Mixing and Optical Frequency Analyzer
585(2)
35.8 Stimulated Raman Scattering
587(2)
Problems
587(2)
Solutions to Selected Problems 589(12)
References 601(10)
Index 611
1957 - 1962: Study at the Universities of Freiburg, Munich and Frankfurt 1962: Diplom in Physics at the University Freiburg, Germany 1966: PhD in Physics at the University Freiburg 1966/67: Postdoc at the University Reading, Great Britain 1967-72: Postdoc at the Technical University Munich 1972: Professor of Physics, University of Regensburg 1976-92: Visiting Professor at various laboratories: High-Frequency Magnet Laboratory in Grenoble; University of California, Los Angeles; Universite Scientific et Medical de Grenoble; University of Canterbury, New Zealand 2006: Professor emeritus