Atjaunināt sīkdatņu piekrišanu

Bayesian Data Analysis for Animal Scientists: The Basics Softcover Reprint of the Original 1st 2017 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 275 pages, height x width: 235x155 mm, weight: 615 g, 151 Illustrations, color; 9 Illustrations, black and white; XVIII, 275 p. 160 illus., 151 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 10-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319853597
  • ISBN-13: 9783319853598
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 78,14 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 91,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 275 pages, height x width: 235x155 mm, weight: 615 g, 151 Illustrations, color; 9 Illustrations, black and white; XVIII, 275 p. 160 illus., 151 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 10-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319853597
  • ISBN-13: 9783319853598
Citas grāmatas par šo tēmu:
In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters.

In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.

Foreword.- Notation.-
1. Do we understand classical statistics?.-
2. The
Bayesian choice.-
3. Posterior distributions.-
4. MCMC.-
5. The baby
model.-
6. The linear model. I. The fixed effects model.-
7. The linear
model. II. The mixed model.-
8. A scope of the possibilities of Bayesian
inference + MCMC.-
9. Prior information.-
10. Model choice.- Appendix.-
References.
Agustin Blasco

Professor of Animal Breeding and Genetics

Visiting scientist at ABRO (Edinburgh), INRA (Jouy en Josas) and FAO (Rome). He was President of the World Rabbit Science Association and editor in chief of the journal World Rabbit Science. His career has focused on the genetics of litter size components and genetics of meat quality in rabbits and pigs. He has published more than one hundred papers in international journals. Invited speaker several times at the European Association for Animal Production and at the World Congress on Genetics Applied to Livestock Production among others. Chapman Lecturer at the University of Wisconsin. He has taught courses on Bayesian Inference at the universities of Valencia (Spain), Edinburgh (UK), Wisconsin (USA), Padua (Italy), Sao Paulo, Lavras (Brazil), Nacional (Uruguay), Lomas (Argentina) and at INRA in Toulouse (France).