Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bayesian Epistemology

3.67/5 (34 ratings by Goodreads)
(, Professor of Philosophy, London School of Economics and Political Science), (Department of Philosophy, University of Colorado at Boulder)
  • Formāts: PDF+DRM
  • Izdošanas datums: 08-Jan-2004
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780191533525
  • Formāts - PDF+DRM
  • Cena: 40,14 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 08-Jan-2004
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780191533525

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Probabilistic models have much to offer to philosophy. We continually receive information from a variety of sources: from our senses, from witnesses, from scientific instruments. When considering whether we should believe this information, we assess whether the sources are independent, how reliable they are, and how plausible and coherent the information is. Bovens and Hartmann provide a systematic Bayesian account of these features of reasoning. Simple Bayesian Networks allow us to model alternative assumptions about the nature of the information sources. Measurement of the coherence of information is a controversial matter: arguably, the more coherent a set of information is, the more confident we may be that its content is true, other things being equal. The authors offer a new treatment of coherence which respects this claim and shows its relevance to scientific theory choice. Bovens and Hartmann apply this methodology to a wide range of much discussed issues regarding evidence, testimony, scientific theories, and voting. Bayesian Epistemology is an essential tool for anyone working on probabilistic methods in philosophy, and has broad implications for many other disciplines.
Introduction 1(8)
Information
9(19)
C. I. Lewis's Heritage
9(1)
Bayesian Coherentism
10(4)
Modelling Information Gathering
14(5)
An Impossibility Result
19(3)
Weak Bayesian Coherentism
22(6)
Coherence
28(28)
Unequal Priors
28(2)
Constructing a Measure
30(9)
A Corpse in Tokyo, BonJour's Ravens and Tweety
39(6)
Equal Reliability
45(2)
Indeterminacy
47(2)
Alternative Proposals
49(4)
Theory Choice in Science
53(3)
Reliability
56(33)
Reliability Defined Endogenously
56(2)
One Witness Report
58(2)
Multiple Witness Reports
60(3)
An Upper Limit for Reliability?
63(4)
Bayesian Networks
67(14)
Jury Voting
81(4)
Tversky and Kahneman's Linda
85(4)
Confirmation
89(23)
Hypothesis Testing
89(5)
Same Test Results
94(4)
Coherent Test Results
98(5)
The Variety-of-Evidence Thesis
103(4)
Auxiliary Theories
107(5)
Testimony
112(16)
The Value of Surprising Information
112(1)
Testimonies from Independent Witnesses
113(2)
Lower Priors, Higher Posteriors?
115(6)
Generalizing to Many Witnesses
121(2)
Shopping for Consumer Products
123(5)
Epilogue 128(3)
Appendix 131(23)
References 154(3)
Index 157


Stephan Hartmann is Chair of Philosophy of Science at LMU Munich, Alexander von Humboldt Professor, and Co-Director of the Munich Center for Mathematical Philosophy (MCMP). From 2007 to 2012 he worked at Tilburg University, The Netherlands, where he was Chair in Epistemology and Philosophy of Science and Director of the Tilburg Center for Logic and Philosophy of Science (TiLPS). Before moving to Tilburg, he was Professor of Philosophy in the Department of Philosophy, Logic and Scientific Method at the London School of Economics and Director of LSE's Centre for Philosophy of Natural and Social Science. His primary research and teaching areas are philosophy of science, philosophy of physics, formal epistemology, and social epistemology.