Preface |
|
xi | |
|
1 Introduction to Bayesian Inference |
|
|
1 | (12) |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.4 Computational methods |
|
|
3 | (1) |
|
1.5 Markov chain Monte Carlo |
|
|
3 | (1) |
|
1.6 The integrated nested Laplace approximation |
|
|
4 | (1) |
|
1.7 An introductory example: U's in Game of Thrones books |
|
|
5 | (6) |
|
|
11 | (2) |
|
2 The Integrated Nested Laplace Approximation |
|
|
13 | (26) |
|
|
13 | (1) |
|
2.2 The Integrated Nested Laplace Approximation |
|
|
13 | (4) |
|
|
17 | (7) |
|
2.4 Model assessment and model choice |
|
|
24 | (4) |
|
|
28 | (2) |
|
2.6 Working with posterior marginals |
|
|
30 | (5) |
|
2.7 Sampling from the posterior |
|
|
35 | (4) |
|
|
39 | (36) |
|
|
39 | (1) |
|
|
39 | (3) |
|
3.3 Types of mixed-effects models |
|
|
42 | (21) |
|
3.4 Information on the latent effects |
|
|
63 | (1) |
|
|
63 | (10) |
|
|
73 | (2) |
|
|
75 | (28) |
|
|
75 | (1) |
|
4.2 Multilevel models with random effects |
|
|
75 | (7) |
|
4.3 Multilevel models with nested effects |
|
|
82 | (5) |
|
4.4 Multilevel models with complex structure |
|
|
87 | (3) |
|
4.5 Multilevel models for longitudinal data |
|
|
90 | (3) |
|
4.6 Multilevel models for binary data |
|
|
93 | (4) |
|
4.7 Multilevel models for count data |
|
|
97 | (6) |
|
|
103 | (16) |
|
|
103 | (1) |
|
|
103 | (4) |
|
5.3 Implementing new priors |
|
|
107 | (4) |
|
5.4 Penalized Complexity priors |
|
|
111 | (2) |
|
5.5 Sensitivity analysis with R-INLA |
|
|
113 | (1) |
|
5.6 Scaling effects and priors |
|
|
114 | (2) |
|
|
116 | (3) |
|
|
119 | (22) |
|
|
119 | (1) |
|
|
119 | (2) |
|
|
121 | (7) |
|
|
128 | (3) |
|
|
131 | (7) |
|
|
138 | (2) |
|
|
140 | (1) |
|
|
141 | (36) |
|
|
141 | (1) |
|
|
141 | (14) |
|
|
155 | (11) |
|
|
166 | (11) |
|
|
177 | (24) |
|
|
177 | (1) |
|
8.2 Autoregressive models |
|
|
177 | (6) |
|
|
183 | (4) |
|
|
187 | (1) |
|
|
188 | (4) |
|
8.6 Spatio-temporal models |
|
|
192 | (6) |
|
|
198 | (3) |
|
|
201 | (18) |
|
|
201 | (1) |
|
|
201 | (5) |
|
9.3 Smooth terms with INLA |
|
|
206 | (6) |
|
|
212 | (2) |
|
|
214 | (4) |
|
|
218 | (1) |
|
|
219 | (24) |
|
|
219 | (1) |
|
10.2 Non-parametric estimation of the survival curve |
|
|
220 | (2) |
|
10.3 Parametric modeling of the survival function |
|
|
222 | (2) |
|
10.4 Semi-parametric estimation: Cox proportional hazards |
|
|
224 | (3) |
|
10.5 Accelerated failure time models |
|
|
227 | (3) |
|
|
230 | (3) |
|
|
233 | (10) |
|
11 Implementing New Latent Models |
|
|
243 | (16) |
|
|
243 | (1) |
|
11.2 Spatial latent effects |
|
|
243 | (2) |
|
11.3 R implementation with rgeneric |
|
|
245 | (6) |
|
11.4 Bayesian model averaging |
|
|
251 | (3) |
|
|
254 | (3) |
|
11.6 Comparison of results |
|
|
257 | (1) |
|
|
257 | (2) |
|
12 Missing Values and Imputation |
|
|
259 | (20) |
|
|
259 | (1) |
|
12.2 Missingness mechanism |
|
|
259 | (1) |
|
12.3 Missing values in the response |
|
|
260 | (7) |
|
12.4 Imputation of missing covariates |
|
|
267 | (5) |
|
12.5 Multiple imputation of missing values |
|
|
272 | (5) |
|
|
277 | (2) |
|
|
279 | (20) |
|
|
279 | (1) |
|
13.2 Bayesian analysis of mixture models |
|
|
279 | (4) |
|
13.3 Fitting mixture models with INLA |
|
|
283 | (6) |
|
13.4 Model selection for mixture models |
|
|
289 | (4) |
|
|
293 | (5) |
|
|
298 | (1) |
Packages used in the book |
|
299 | (4) |
Bibliography |
|
303 | (10) |
Index |
|
313 | |