Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bayesian Model Comparison

Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Advances in Econometrics
  • Izdošanas datums: 21-Nov-2014
  • Izdevniecība: Emerald Group Publishing Limited
  • Valoda: eng
  • ISBN-13: 9781784411848
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 136,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Advances in Econometrics
  • Izdošanas datums: 21-Nov-2014
  • Izdevniecība: Emerald Group Publishing Limited
  • Valoda: eng
  • ISBN-13: 9781784411848
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Editors Jeliazkov and Poirier present students, academics, and researchers working in a wide variety of contexts with a collection of academic papers and articles devoted to Bayesian model comparison, summarizing central topics and developments in the literature, providing new techniques, methodology, and findings in theoretical, modeling, computational, and inferential research. The eleven international contributions that make up the bulk of the text cover model switching and model averaging in time-varying parameter regression models, Bayesian selection of systematic risk networks, factor selection in dynamic hedge fund replication models, and a variety of other related subjects. Ivan Jeliazkov and Dale J. Poirier are both faculty members of the University of California, Irvine. Distributed in North America by Turpin Distribution. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com) Volume 34 of the well respected Advances in Econometrics. This series publishes original scholarly econometrics papers with the intention of expanding the use of developed and emerging econometric techniques by disseminating ideas on the theory and practice of econometrics throughout the empirical economic, business and social science literature. Annual volume themes, selected by the Series Editors, are their interpretation of important new methods and techniques emerging in economics, statistics and the social sciences. Advances in Econometrics is essential reading for academics, researchers and practitioners who are involved in applied economic, business or social science research, and eager to keep up with the latest methodological tools.
List Of Contributors
vii
Preface ix
Ivan Jeliazkov
Dale J. Poirier
Adaptive Sequential Posterior Simulators For Massively Parallel Computing Environments
1(44)
Garland Durham
John Geweke
Model Switching And Model Averaging In Time-Varying Parameter Regression Models
45(26)
Miguel Belmonte
Gary Koop
Assessing Bayesian Model Comparison In Small Samples
71(46)
Enrique Martinez-Garcia
Mark A. Wynne
Bayesian Selection Of Systemic Risk Networks
117(38)
Daniel Felix Ahelegbey
Paolo Giudici
Parallel Constrained Hamiltonian Monte Carlo For Bekk Model Comparison
155(26)
Martin Burda
Factor Selection In Dynamic Hedge Fund Replication Models: A Bayesian Approach
181(42)
Guillaume Weisang
Determining The Proper Specification For Endogenous Covariates In Discrete Data Settings
223(26)
Angela Vossmeyer
Variable Selection In Bayesian Models: Using Parameter Estimation And Non Parameter Estimation Methods
249(30)
Gail Blattenberger
Richard Fowles
Peter D. Loeb
Intrinsic Priors For Objective Bayesian Model Selection
279(22)
Elias Moreno
Luis Raul Pericchi
Demand Estimation With High-Dimensional Product Characteristics
301(24)
Benjamin J. Gillen
Matthew Shum
Hyungsik Roger Moon
Copula Analysis Of Correlated Counts
325
Esther Hee Lee