Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bayesian Models of Cognition: Reverse Engineering the Mind

4.20/5 (10 ratings by Goodreads)
  • Formāts: 648 pages
  • Sērija : The MIT Press
  • Izdošanas datums: 12-Nov-2024
  • Izdevniecība: MIT Press
  • Valoda: eng
  • ISBN-13: 9780262381055
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 240,44 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 648 pages
  • Sērija : The MIT Press
  • Izdošanas datums: 12-Nov-2024
  • Izdevniecība: MIT Press
  • Valoda: eng
  • ISBN-13: 9780262381055
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"The definitive work on the Bayesian approach to Cognitive Science and an important work in understanding the mind and the brain"--

The definitive introduction to Bayesian cognitive science, written by pioneers of the field.

How does human intelligence work, in engineering terms? How do our minds get so much from so little? Bayesian models of cognition provide a powerful framework for answering these questions by reverse-engineering the mind. This textbook offers an authoritative introduction to Bayesian cognitive science and a unifying theoretical perspective on how the mind works. Part I provides an introduction to the key mathematical ideas and illustrations with examples from the psychological literature, including detailed derivations of specific models and references that can be used to learn more about the underlying principles. Part II details more advanced topics and their applications before engaging with critiques of the reverse-engineering approach. Written by experts at the forefront of new research, this comprehensive text brings the fields of cognitive science and artificial intelligence back together and establishes a firmly grounded mathematical and computational foundation for the understanding of human intelligence. 

  • The only textbook comprehensively introducing the Bayesian approach to cognition
  • Written by pioneers in the field
  • Offers cutting-edge coverage of Bayesian cognitive science's research frontiers 
  • Suitable for advanced undergraduate and graduate students and researchers across the sciences with an interest in the mind, brain, and intelligence 
  • Features short tutorials and case studies of specific Bayesian models
Preface
Part I: The Basics
1 Introducing the Bayesian approach to cognitive science
2 Probabilistic models of cognition in historical context
3 Bayesian inference
4 Graphical models
5 Building complex generative models
6 Approximate probabilistic inference
7 From probabilities to actions
Part II: Advanced Topics
8 Learning inductive bias with hierarchical Bayesian models
9 Capturing the growth of knowledge with nonparametric Bayesian models
10 Estimating subjective probability distributions
11 Sampling as a bridge across levels of analysis
12 Bayesian models and neural networks
13 Resource-rational analysis
14 Theory of mind and inverse planning
15 Intuitive physics as probabilistic inference
16 Language processing and language learning
17 Bayesian inference over logical representations
18 Probabilistic programs as a unifying language of thought
19 Learning as Bayesian inference over programs
20 Bayesian models of cognitive development
21 The limits of inference and algorithmic probability
22 A Bayesian conversation
Conclusion
Acknowledgments
References