Preface |
|
xi | |
|
|
1 | (8) |
|
1.1 Some questions about primes |
|
|
1 | (1) |
|
|
2 | (2) |
|
|
4 | (2) |
|
1.4 π, II, and an extended notion of g-numbers |
|
|
6 | (1) |
|
|
7 | (2) |
|
Chapter 2 Analytic Machinery |
|
|
9 | (10) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
2.6 Convolution of measures |
|
|
12 | (3) |
|
2.7 Convolution of functions |
|
|
15 | (1) |
|
2.8 The L and T operators |
|
|
16 | (2) |
|
|
18 | (1) |
|
Chapter 3 dN as an Exponential and Chebyshev's Identity |
|
|
19 | (10) |
|
|
19 | (2) |
|
3.2 Power series in measures |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (4) |
|
3.5 Three equivalent formulas |
|
|
27 | (1) |
|
|
28 | (1) |
|
Chapter 4 Upper and Lower Estimates of N(x) |
|
|
29 | (12) |
|
4.1 Normalization and restriction |
|
|
29 | (1) |
|
|
30 | (3) |
|
|
33 | (3) |
|
4.4 An example with infinite residue but 0 lower log density |
|
|
36 | (1) |
|
4.5 Extreme thinness is inherited |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (1) |
|
Chapter 5 Mertens' Formulas and Logarithmic Density |
|
|
41 | (12) |
|
|
41 | (1) |
|
|
41 | (2) |
|
5.3 The Hardy-Littlewood-Karamata Theorem |
|
|
43 | (2) |
|
|
45 | (1) |
|
5.5 Mertens' product formula |
|
|
46 | (1) |
|
|
47 | (1) |
|
5.7 An equivalent form and proof of "only if" |
|
|
48 | (1) |
|
5.8 Tauber's Theorem and conclusion of the argument |
|
|
49 | (2) |
|
|
51 | (2) |
|
Chapter 6 O-Density of g-integers |
|
|
53 | (10) |
|
6.1 Non-relation of log-density and O-density |
|
|
53 | (3) |
|
6.2 O-Criteria for O-density |
|
|
56 | (4) |
|
6.3 Sharper criteria for O-density |
|
|
60 | (2) |
|
|
62 | (1) |
|
Chapter 7 Density of g-integers |
|
|
63 | (14) |
|
7.1 Densities and right hand residues |
|
|
63 | (1) |
|
|
63 | (2) |
|
|
65 | (4) |
|
7.4 An L1 criterion for density |
|
|
69 | (3) |
|
7.5 Estimates of N(x) with an error term |
|
|
72 | (4) |
|
|
76 | (1) |
|
Chapter 8 Simple Estimates of π(x) |
|
|
77 | (6) |
|
8.1 Unboundedness of π(x) |
|
|
77 | (1) |
|
8.2 Can there be as many primes as integers? |
|
|
78 | (1) |
|
8.3 π(x) estimates via regular growth |
|
|
79 | (2) |
|
8.4 Lower bounds for Σ 1/Pi via lower log-density |
|
|
81 | (1) |
|
|
81 | (2) |
|
Chapter 9 Chebyshev Bounds -- Elementary Theory |
|
|
83 | (16) |
|
|
83 | (1) |
|
9.2 Chebyshev bounds for natural primes |
|
|
83 | (4) |
|
9.3 An auxiliary function |
|
|
87 | (3) |
|
9.4 Chebyshev bounds for g-primes |
|
|
90 | (5) |
|
9.5 A failure of Chebyshev bounds |
|
|
95 | (3) |
|
|
98 | (1) |
|
Chapter 10 Wiener-Ikehara Tauberian Theorems |
|
|
99 | (12) |
|
|
99 | (1) |
|
10.2 Wiener-Ikehara Theorems |
|
|
99 | (2) |
|
|
101 | (3) |
|
10.4 Proof of the Wiener-Ikehara Theorems |
|
|
104 | (4) |
|
10.5 A W-I oscillatory example |
|
|
108 | (2) |
|
|
110 | (1) |
|
Chapter 11 Chebyshev Bounds -- Analytic Methods |
|
|
111 | (8) |
|
|
111 | (1) |
|
11.2 Wiener-Ikehara setup |
|
|
112 | (1) |
|
11.3 A first decomposition |
|
|
113 | (1) |
|
11.4 Further decomposition of I2, σ(y) |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
117 | (2) |
|
Chapter 12 Optimality of a Chebyshev Bound |
|
|
119 | (14) |
|
|
119 | (1) |
|
12.2 The g-prime system PB |
|
|
119 | (3) |
|
12.3 Chebyshev bounds and the zeta function ζB(s) |
|
|
122 | (2) |
|
12.4 The counting function NB(x) |
|
|
124 | (3) |
|
12.5 Fundamental estimates |
|
|
127 | (2) |
|
12.6 Proof of the Optimality Theorem |
|
|
129 | (2) |
|
|
131 | (2) |
|
Chapter 13 Beurling's PNT |
|
|
133 | (18) |
|
|
133 | (1) |
|
13.2 A lower bound for |ζ(σ + it)| |
|
|
133 | (2) |
|
13.3 Nonvanishing of ζ(1 + it) |
|
|
135 | (2) |
|
13.4 An L1 condition and conclusion of the proof |
|
|
137 | (2) |
|
13.5 Optimality -- a continuous example |
|
|
139 | (5) |
|
13.6 Optimality -- a discrete example |
|
|
144 | (4) |
|
|
148 | (3) |
|
Chapter 14 Equivalences to the PNT |
|
|
151 | (10) |
|
|
151 | (1) |
|
|
151 | (1) |
|
14.3 Sharp Mertens relation and the PNT |
|
|
152 | (2) |
|
14.4 Optimality of the sharp Mertens theorem |
|
|
154 | (1) |
|
14.5 Implications between M(x) = o(x) and m(x) = o(1) |
|
|
155 | (1) |
|
14.6 Connections of the PNT with M(x) = o(x) |
|
|
156 | (2) |
|
14.7 Sharp Mertens relation and m(x) = o(1) |
|
|
158 | (2) |
|
|
160 | (1) |
|
|
161 | (14) |
|
|
161 | (1) |
|
15.2 Zeros of the zeta function |
|
|
162 | (3) |
|
15.3 A lower bound for |ζ(σ + it)| |
|
|
165 | (1) |
|
15.4 A Schwartz function and Poisson summation |
|
|
166 | (4) |
|
15.5 Estimating the sum of a series by an improper integral |
|
|
170 | (2) |
|
15.6 Conclusion of the proof |
|
|
172 | (2) |
|
|
174 | (1) |
|
Chapter 16 PNT with Remainder |
|
|
175 | (20) |
|
|
175 | (1) |
|
|
176 | (3) |
|
16.3 A Nyman type remainder term |
|
|
179 | (7) |
|
16.4 A dlVP-type remainder term |
|
|
186 | (6) |
|
|
192 | (3) |
|
Chapter 17 Optimality of the dlVP Remainder Term |
|
|
195 | (34) |
|
|
195 | (1) |
|
17.2 Discrete random approximation |
|
|
196 | (8) |
|
17.3 Generalized primes satisfying the Riemann Hypothesis |
|
|
204 | (4) |
|
17.4 Generalized primes with large oscillation |
|
|
208 | (1) |
|
|
209 | (1) |
|
17.6 Representation of log G(z) as a Mellin transform |
|
|
210 | (4) |
|
17.7 A template zeta function |
|
|
214 | (4) |
|
17.8 Asymptotics of Nb(x) |
|
|
218 | (4) |
|
17.9 Asymptotics of ψB(x) |
|
|
222 | (4) |
|
17.10 Normalization and hybrid |
|
|
226 | (1) |
|
|
227 | (2) |
|
Chapter 18 The Dickman and Buchstab Functions |
|
|
229 | (10) |
|
|
229 | (1) |
|
18.2 The ψ(a, y) function |
|
|
230 | (3) |
|
18.3 The φ(x, y) function |
|
|
233 | (1) |
|
18.4 A Beurling version of ψ(x, y) |
|
|
234 | (1) |
|
18.5 G-numbers with primes from an interval |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
238 | (1) |
Bibliography |
|
239 | (4) |
Index |
|
243 | |