Atjaunināt sīkdatņu piekrišanu

E-grāmata: Big Data Analytics in Fog-Enabled IoT Networks: Towards a Privacy and Security Perspective

Edited by (NIT, Raipur, India), Edited by (Director, International Center for AI & CCRI), Edited by (Hong Kong Metropolitan University), Edited by (NIT, Raipur, India)
  • Formāts: 232 pages
  • Izdošanas datums: 19-Apr-2023
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000861846
  • Formāts - PDF+DRM
  • Cena: 56,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 232 pages
  • Izdošanas datums: 19-Apr-2023
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000861846

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The integration of fog computing with the resource-limited Internet of Things (IoT) network formulates the concept of the fog-enabled IoT system. Due to a large number of IoT devices, the IoT is a main source of Big Data. A large volume of sensing data is generated by IoT systems such as smart cities and smart-grid applications. A fundamental research issue is how to provide a fast and efficient data analytics solution for fog-enabled IoT systems. Big Data Analytics in Fog-Enabled IoT Networks: Towards a Privacy and Security Perspective focuses on Big Data analytics in a fog-enabled-IoT system and provides a comprehensive collection of chapters that touch on different issues related to healthcare systems, cyber-threat detection, malware detection, and the security and privacy of IoT Big Data and IoT networks.

This book also emphasizes and facilitates a greater understanding of various security and privacy approaches using advanced artificial intelligence and Big Data technologies such as machine and deep learning, federated learning, blockchain, and edge computing, as well as the countermeasures to overcome the vulnerabilities of the fog-enabled IoT system.



This book emphasizes and facilitate a greater understanding of various security and privacy approaches using the advance AI and Big data technologies like machine/deep learning, federated learning, blockchain, edge computing and the countermeasures to overcome the vulnerabilities of the Fog-enabled IoT system.

    1. Deep Learning Techniques in Big Data-Enabled Internet-of-Things Devices.
    2. IoMT based Smart Health Monitoring: The Future of HealthCare.
    3. A Review on Intrusion Detection Systems and Cyber Threat Intelligence for Secure IoT-Enabled Network: Challenges and Directions.
    4. Self-Adaptive Application Monitoring for Decentralized Edge Frameworks.
    5. Federated Learning and Its Application in Malware Detection.
    6. An Ensemble XGBoost Approach for the Detection of Cyber-Attacks in the Industrial IOT Domain.
    7. A Review on IoT for the Application of Energy, Environment, and Waste Management: System Architecture and Future Directions.
    8. Analysis of Feature Selection Methods for Android Malware Detection Using Machine Learning Techniques.
    9. An Efficient Optimizing Energy Consumption Using Modified Bee Colony Optimization in Fog and IoT Networks.