Atjaunināt sīkdatņu piekrišanu

E-grāmata: Big Data Applications and Use Cases

  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents different use cases in big data applications and related practical experiences. Many businesses today are increasingly interested in utilizing big data technologies for supporting their business intelligence so that it is becoming more and more important to understand the various practical issues from different practical use cases. This book provides clear proof that big data technologies are playing an ever increasing important and critical role in a new cross-discipline research between computer science and business.

Introduction to Big Data.- A Bloom Filter-based Approach for Supporting the Representation and Membership Query of Multidimensional Dataset.- Automatic Speech and Singing Discrimination for Audio Data Indexing.- Exploring the Feature Selection-based Data Analytics Solutions for Text Mining Online Communities by Investigating the Influential Factors - A Case Study of Programming CQA in Stack Overflow.- Temporal Event Tracing on Big Healthcare Data Analytics.- Unstructured Data, NoSQL, and Terms Analytics.- VLAB-C: Collaborative Virtual Laboratory in Cloud Computing and its Applications.- A Crowdsourcing Social Network Service for Social Enterprise Innovation.- Self-adaptive Parameters Optimization for Incremental Classification in Big Data Using Neural Network.- VLAB-C: Collaborative Virtual Laboratory in Cloud Computing and its Applications.- Case Studies of Government Use of Big Data in Latin America: Brazil and Mexico.

Recenzijas

This book would be of interest to researchers and practitioners in the data analytics field. It examines the characteristics of big data; the uses of big data, including government, marketing, insurance, the Internet of Things, and healthcare; and different analytic approaches. The book is reasonably well organized and provides examples of the application of data analysis to various public and private sector organizations. Sufficient references are provided. (Computing Reviews, August, 2017) 

Introduction to Big Data 1(16)
William Rafferty
Laura Rafferty
Patrick C. K. Hung
A Bloom Filter-Based Approach for Supporting the Representation and Membership Query of Multidimensional Dataset
17(16)
Zhu Wang
Tiejian Luo
Automatic Speech and Singing Discrimination for Audio Data Indexing
33(16)
Wei-Ho Tsai
Cin-Hao Ma
Exploring the Feature Selection-Based Data Analytics Solutions for Text Mining Online Communities by Investigating the Influential Factors: A Case Study of Programming CQA in Stack Overflow
49(46)
Shu Zhou
Simon Fong
Temporal Event Tracing on Big Healthcare Data Analytics
95(14)
Chin-Ho Lin
Liang-Cheng Huang
Seng-Cho T. Chou
Chih-Ho Liu
Han-Fang Cheng
I-Jen Chiang
Unstructured Data, NoSQL, and Terms Analytics
109(36)
Richard K. Lomotey
Ralph Deters
VLAB-C: Collaborative Virtual Laboratory in Cloud Computing and Its Applications
145(30)
Jianjun Yu
Kejun Dong
Yihua Zheng
Self-Adaptive Parameters Optimization for Incremental Classification in Big Data Using Neural Network
175(22)
Simon Fong
Charlie Fang
Neal Tian
Raymond Wong
Bee Wah Yap
Case Studies of Government Use of Big Data in Latin America: Brazil and Mexico
197
Roberto da Mota Ueti
Daniela Fernandez Espinosa
Laura Rafferty
Patrick C. K. Hung
Patrick C. K. Hung is an Associate Professor at the Faculty of Business and Information Technology in University of Ontario Institute of Technology, Canada and an Honorary International Chair Professor at the Department of Electronic Engineering in National Taipei University of Technology, Taiwan. Patrick has worked with Boeing Research and Technology on aviation services-related research with two patents on mobile network dynamic workflow system. He is also a Visiting Professor at University of Sao Paulo, Brazil. In addition, he was an Adjunct Professor at Wuhan University, a Visiting Professor at the Shizuoka University and University of Aizu in Japan, a Guest Professor in University of Innsbruck in Austria, University of Trento and University of Milan in Italy. Before that, he was a Research Scientist with Commonwealth Scientific and Industrial Research Organization in Australia as well as he worked as a software engineer in industry in North America. He is a founding committee member of the IEEE International Conference of Web Services (ICWS), IEEE International Conference on Services Computing (SCC), and IEEE BigData Congress (BigData Congress). He is also an Associate Editor of the IEEE Transactions on Services Computing, and a Coordinating Editor of the Information Systems Frontiers.