Atjaunināt sīkdatņu piekrišanu

E-grāmata: Big Data in Finance: Opportunities and Challenges of Financial Digitalization

Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Oct-2022
  • Izdevniecība: Palgrave Macmillan
  • Valoda: eng
  • ISBN-13: 9783031122408
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Oct-2022
  • Izdevniecība: Palgrave Macmillan
  • Valoda: eng
  • ISBN-13: 9783031122408
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This edited book explores the unique risks, opportunities, challenges, and societal implications associated with big data developments within the field of finance. While the general use of big data has been the subject of frequent discussions, this book will take a more focused look at big data applications in the financial sector. With contributions from researchers, practitioners, and entrepreneurs involved at the forefront of big data in finance, the book discusses technological and business-inspired breakthroughs in the field. The contributions offer technical insights into the different applications presented and highlight how these new developments may impact and contribute to the evolution of the financial sector. Additionally, the book presents several case studies that examine practical applications of big data in finance. In exploring the readiness of financial institutions to adapt to new developments in the big data/artificial intelligence space and assessing different implementation strategies and policy solutions, the book will be of interest to academics, practitioners, and regulators who work in this field.

Introduction Big Data in Finance: An Overview 3(10)
Thomas Walker
Frederick Davis
Tyler Schwartz
Big Data in the Financial Markets Alternative Data
13(22)
Vincent Gregoire
Noah Jepson
An Algorithmic Trading Strategy to Balance Profitability and Risk
35(20)
Guillermo Pefla
High-Frequency Trading and Market Efficiency in the Moroccan Stock Market
55(14)
El Mehdi Ferrouhi
Ibrahim Bouabdallaoui
Ensemble Models Using Symbolic Regression and Genetic Programming for Uncertainty Estimation in ESG and Alternative Investments
69(26)
Percy Venegas
Isabel Britez
Fernand Gobet
Big Data in Financial Services
Consumer Credit Assessments in the Age of Big Data
95(20)
Lynnette Purda
Cecilia Ying
Robo-Advisors: A Big Data Challenge
115(18)
Federico Severino
Sebastien Thierry
Bitcoin: Future or Fad?
133(26)
Daniel Tut
Culture, Digital Assets, and the Economy: A Trans-National Perspective
159(28)
John Fan Zhang
Zehuang Xu
Yi Peng
Wujin Yang
Haorou Zhao
Case Studies and Applications
Islamic Finance in Canada Powered by Big Data: A Case Study
187(20)
Imran Abdool
Mustafa Abdool
Assessing the Carbon Footprint of Cryptoassets: Evidence from a Bivariate VAR Model
207(24)
Hany Fahmy
A Data-Informed Approach to Financial Literacy Enhancement Using Cognitive and Behavioral Analytics
231(34)
Prasanta Bhattacharya
Kum Seong Wan
Boon Kiat Quek
Waseem Bak'r Hameed
Sivanithy Rathananthan
Index 265
Thomas Walker is a Full Professor of Finance and the Concordia University Research Chair in Emerging Risk Management at Concordia University, Montreal, Canada. Prior to academia, he worked for several years in the German consulting and industrial sector at Mercedes Benz, Utility Consultants International, Lahmeyer International, Telenet, and KPMG Peat Marwick.





Frederick Davis is an Associate Professor at the John Molson School of Business at Concordia University, Montreal, Canada. Prior to his academic career, he worked for several years in the government sector assisting communities with their economic development. His research interests include mergers and acquisitions, insider trading, big data, and other aspects of corporate finance.







Tyler Schwartz holds an MSc degree in Data Science and Business Analytics from HEC Montreal. He has served as a research assistant in the Department of Finance at Concordia University for over four years and is the co-author of an edited book collection on climate change adaptation as well as working papers on social impact bonds and the Sustainable Development Goals (SDGs).