Atjaunināt sīkdatņu piekrišanu

E-grāmata: Big Data Management And Analytics

(Punjab Engineering College, Chandigarh, India), (National Institute Of Technology Kurukshetra, India)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 146,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"With the proliferation of information, big data management and analysis have become an indispensable part of any system to handle such amounts of data. The amount of data generated by the multitude of interconnected devices increases exponentially, making the storage and processing of these data a real challenge. Big data management and analytics have gained momentum in almost every industry, ranging from finance or healthcare. Big data can reveal key insights if handled and analyzed properly; it has great application potential to improve the working of any industry. This book covers the spectrum aspects of big data; from the preliminary level to specific case studies. It will help readers gain knowledge of the big data landscape. Highlights of the topics covered include description of the Big Data ecosystem; real-world instances of big data issues; how the Vs of Big Data (volume, velocity, variety, veracity, valence, and value) affect data collection, monitoring, storage, analysis, and reporting; structural process to get value out of Big Data and recognize the differences between a standard database management system and a big data management system. Readers will gain insights into choice of data models, data extraction, data integration to solve large data problems, data modelling using machine learning techniques, Spark's scalable machine learning techniques, modeling a big data problem into a graph database and performing scalable analytical operations over the graph and different tools and techniques for processing big data and its applications including in healthcare and finance"--

With The Proliferation Of Information, Big Data Management And Analysis Have Become An Indispensable Part Of Any System To Handle Such Amounts Of Data. The Amount Of Data Generated By The Multitude Of Interconnected Devices Increases Exponentially, Making The Storage And Processing Of These Data A Real Challenge. Big Data Management And Analytics Have Gained Momentum In Almost Every Industry, Ranging From Finance Or Healthcare. Big Data Can Reveal Key Insights If Handled And Analyzed Properly; It Has Great Application Potential To Improve The Working Of Any Industry. This Book Covers The Spectrum Aspects Of Big Data; From The Preliminary Level To Specific Case Studies. It Will Help Readers Gain Knowledge Of The Big Data Landscape. Highlights Of The Topics Covered Include Description Of The Big Data Ecosystem; Real-World Instances Of Big Data Issues; How The Vs Of Big Data (Volume, Velocity, Variety, Veracity, Valence, And Value) Affect Data Collection, Monitoring, Storage, Analysis, And Reporting; Structural Process To Get Value Out Of Big Data And Recognize The Differences Between A Standard Database Management System And A Big Data Management System. Readers Will Gain Insights Into Choice Of Data Models, Data Extraction, Data Integration To Solve Large Data Problems, Data Modelling Using Machine Learning Techniques, Spark'S Scalable Machine Learning Techniques, Modeling A Big Data Problem Into A Graph Database And Performing Scalable Analytical Operations Over The Graph And Different Tools And Techniques For Processing Big Data And Its Applications Including In Healthcare And Finance.