Atjaunināt sīkdatņu piekrišanu

E-grāmata: BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers

4.11/5 (93 ratings by Goodreads)
(Georgia Institute of Technology, Atlanta), (Yonsei University in Seoul, Korea), (Israel Institute of Technology), (Stanford University)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 03-Jul-2018
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119287551
  • Formāts - EPUB+DRM
  • Cena: 101,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 03-Jul-2018
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119287551

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Discover BIM: A better way to build better buildings

Building Information Modeling (BIM) offers a novel approach to design, construction, and facility management in which a digital representation of the building product and process is used to facilitate the exchange and interoperability of information in digital format. BIM is beginning to change the way buildings look, the way they function, and the ways in which they are designed and built.

The BIM Handbook, Third Edition provides an in-depth understanding of BIM technologies, the business and organizational issues associated with its implementation, and the profound advantages that effective use of BIM can provide to all members of a project team. Updates to this edition include:

  • Information on the ways in which professionals should use BIM to gain maximum value
  • New topics such as collaborative working, national and major construction clients, BIM standards and guides
  • A discussion on how various professional roles have expanded through the widespread use and the new avenues of BIM practices and services
  • A wealth of new case studies that clearly illustrate exactly how BIM is applied in a wide variety of conditions

Painting a colorful and thorough picture of the state of the art in building information modeling, the BIM Handbook, Third Edition guides readers to successful implementations, helping them to avoid needless frustration and costs and take full advantage of this paradigm-shifting approach to construct better buildings that consume fewer materials and require less time, labor, and capital resources.

Foreword to the Third Edition xvii
Preface xxi
Chapter 1 Introduction 1(31)
1.0 Executive Summary
1(1)
1.1 Introduction
2(1)
1.2 The Current AEC Business Model
2(7)
1.2.1 Design-Bid-Build
4(2)
1.2.2 Design-Build
6(1)
1.2.3 Construction Management at Risk
7(1)
1.2.4 Integrated Project Delivery
7(2)
1.2.5 What Kind of Building Procurement Is Best When BIM Is Used?
9(1)
1.3 Documented Inefficiencies of Traditional Approaches
9(4)
1.3.1 CIFE Study of Construction Industry Labor Productivity
10(2)
1.3.2 NIST Study of Cost of Construction Industry Inefficiency
12(1)
1.4 BIM: New Tools and New Processes
13(5)
1.4.1 BIM Platforms and Tools
13(1)
1.4.2 BIM Processes
14(3)
1.4.3 Definition of Parametric Objects
17(1)
1.4.4 Support for Project Team Collaboration
17(1)
1.5 BIM as a Lifecycle Platform
18(1)
1.6 What Is Not a BIM Platform?
19(1)
1.7 What Are the Benefits of BIM? What Problems Does It Address?
20(5)
1.7.1 Preconstruction Benefits to Owner
21(1)
1.7.2 Benefits for Design
21(2)
1.7.3 Construction and Fabrication Benefits
23(2)
1.7.4 Post Construction Benefits
25(1)
1.8 BIM and Lean Construction
25(3)
1.9 What Challenges Can be Expected?
28(2)
1.9.1 Challenges with Collaboration and Teaming
28(1)
1.9.2 Legal Changes to Documentation Ownership and Production
29(1)
1.9.3 Changes in Practice and Use of Information
29(1)
1.9.4 Implementation Issues
29(1)
1.10 Future of Designing and Building With BIM
30(1)
1.11 Case Studies
30(1)
Discussion Questions
31(1)
Chapter 2 Core Technologies and Software 32(53)
2.0 Executive Summary
32(1)
2.1 The Evolution to Object-Based Parametric Modeling
33(15)
2.1.1 Early 3D Modeling
34(10)
2.1.2 Degrees of Parametric Modeling
44(1)
2.1.3 Predefined versus User-Defined Parametric Objects and Libraries
45(3)
2.2 Beyond Parametric Shapes
48(9)
2.2.1 Property and Attribute Handling
48(2)
2.2.2 Drawing Generation
50(2)
2.2.3 Scalability
52(1)
2.2.4 Object Management and Links
53(2)
2.2.5 Some Commonly Asked Questions
55(2)
2.3 BIM Environments, Platforms, and Tools
57(5)
2.3.1 Considerations for BIM Design Applications
60(2)
2.3.2 Considerations for a BIM Environment
62(1)
2.4 BIM Model Quality and Model Checking
62(2)
2.5 BIM Platforms
64(12)
2.5.1 Allplan
65(1)
2.5.2 ArchiCAD
66(2)
2.5.3 Bentley Systems
68(1)
2.5.4 DESTINI Profiler
69(1)
2.5.5 Digital Project
70(2)
2.5.6 Revit
72(1)
2.5.7 Tekla Structures
73(1)
2.5.8 Vectorworks
74(1)
2.5.9 AutoCAD-Based Applications
75(1)
2.6 Design Review Applications
76(6)
2.6.1 Model Viewers
77(2)
2.6.2 Model Integration Tools
79(1)
2.6.3 Model Checkers
80(2)
2.7 Conclusion
82(1)
Discussion Questions
83(2)
Chapter 3 Collaboration and Interoperability 85(45)
3.0 Executive Summary
85(1)
3.1 Introduction
86(2)
3.2 Different Kinds of Data Exchange Methods
88(7)
3.3 Background of Product Data Models
95(12)
3.3.1 Modeling Languages
95(1)
3.3.2 ISO-STEP in Building Construction
96(4)
3.3.3 buildingSMART and IFC
100(1)
3.3.4 What Is the IFC?
100(5)
3.3.5 IDM and MVD
105(2)
3.4 Other Efforts Supporting Standardization
107(5)
3.4.1 buildingSMART Data Dictionary
107(1)
3.4.2 OmniClass
107(1)
3.4.3 COBie
108(2)
3.4.4 XML-Based Schemas
110(2)
3.5 The Evolution from File-Based Exchange to BIM Servers
112(12)
3.5.1 Project Transactions and Synchronization
113(5)
3.5.2 Functionality of BIM Servers
118(3)
3.5.3 BIM Server Review
121(3)
3.6 Interfacing Technologies
124(4)
3.6.1 Semi-Automated Approaches
125(1)
3.6.2 Semantic Approaches
126(2)
Discussion Questions
128(2)
Chapter 4 BIM for Owners and Facility Managers 130(45)
4.0 Executive Summary
130(1)
4.1 Introduction: Why Owners Should Care About BIM
131(2)
4.2 Owner's Role in a BIM Project
133(9)
4.2.1 Design Assessment
133(6)
4.2.2 Complexity of Building Infrastructure and Building Environment
139(1)
4.2.3 Sustainability
140(1)
4.2.4 Public Construction Agencies: BIM Adoption Guidelines
140(2)
4.3 Cost and Time Management
142(12)
4.3.1 Cost Management
142(2)
4.3.2 Time to Market: Schedule Management
144(4)
4.3.3 Facility and Information Asset Management
148(1)
4.3.4 BIM Tool Guide for Owners
149(1)
4.3.5 BIM Cost Estimating Tools
150(1)
4.3.6 Facility and Asset Management Tools
150(4)
4.3.7 Operation Simulation Tools
154(1)
4.4 An Owner and Facility Manager's Building Model
154(6)
4.4.1 Information Content of BIM-FM Model
154(1)
4.4.2 Alternative Approaches to Creating a BIM-FM Model
155(2)
4.4.3 Classification of Model Data and Standards
157(3)
4.5 Leading the BIM Implementation on a Project
160(7)
4.5.1 Develop Guidelines for Use of BIM on Projects
162(2)
4.5.2 Build Internal Leadership and Knowledge
164(1)
4.5.3 Service Provider Selection
165(2)
4.5.4 Provide for Use of a "Big Room" for Design and Construction
167(1)
4.6 Barriers to Implementing BIM: Risks and Common Myths
167(4)
4.7 Issues for Owners to Consider when Adopting BIM
171(2)
Discussion Questions
173(2)
Chapter 5 BIM for Architects and Engineers 175(53)
5.0 Executive Summary
175(2)
5.1 Introduction
177(2)
5.2 Scope of Design Services
179(7)
5.2.1 Collaborative Forms of Project Delivery
180(2)
5.2.2 The Concept of Information Development
182(2)
5.2.3 Civil and Infrastructure Design
184(2)
5.3 BIM Use in Design Processes
186(29)
5.3.1 Concept Design
187(10)
5.3.2 Prefabrication
197(1)
5.3.3 Analysis, Simulation, and Optimization
197(7)
5.3.4 Construction-Level Building Models
204(7)
5.3.5 Design-Construction Integration
211(1)
5.3.6 Design Review
212(3)
5.4 Building Object Models and Libraries
215(8)
5.4.1 Embedding Expertise into Building Components
216(1)
5.4.2 Object Libraries
217(3)
5.4.3 BOM Portals
220(1)
5.4.4 Desktop/LAN Libraries
221(2)
5.5 Considerations in Adoption for Design Practice
223(3)
5.5.1 Justification and Platform Selection
223(2)
5.5.2 Phased Utilization
225(1)
Discussion Questions
226(2)
Chapter 6 BIM for Contractors 228(47)
6.0 Executive Summary
228(2)
6.1 Introduction
230(1)
6.2 Types of Construction Firms
231(1)
6.3 Information Contractors Want from BIM
232(2)
6.4 BIM-Enabled Process Change
234(3)
6.4.1 Leaner Construction
234(2)
6.4.2 Less Paper in Construction
236(1)
6.4.3 Increased Distribution of Work
237(1)
6.5 Developing a Construction Building Information Model
237(4)
6.5.1 Production Detailing
239(1)
6.5.2 Big Room Co-location On-site
240(1)
6.6 Using a Contractor Building Information Model
241(2)
6.7 3D: Visualization and Coordination
243(2)
6.8 4D: Construction Analysis and Planning
245(10)
6.8.1 4D Models to Support Construction Planning
246(3)
6.8.2 Benefits of 4D Models
249(1)
6.8.3 BIM Tools with 4D Capability
250(4)
6.8.4 BIM-Supported Planning and Scheduling Issues and Guidelines
254(1)
6.9 5D: Quantity Takeoff and Cost Estimating
255(5)
6.9.1 Extracting Quantities from BIM Models for Estimating
257(1)
6.9.2 Guidelines and BIM Implementation Issues to Support Quantity Takeoff and Estimating
258(2)
6.10 Production Planning and Control
260(1)
6.11 Off-site Fabrication and Modular Construction
261(2)
6.12 BIM in the Field
263(7)
6.12.1 Delivering Design Information to the Field
263(4)
6.12.2 Coordinating Production
267(1)
6.12.3 Surveying Site Conditions
268(2)
6.13 Cost and Schedule Control and Other Management Functions
270(2)
6.14 Commissioning and Turnover
272(1)
Discussion Questions
273(2)
Chapter 7 BIM for Subcontractors and Fabricators 275(48)
7.0 Executive Summary
275(1)
7.1 Introduction
276(2)
7.2 Types of Subcontractors and Fabricators
278(5)
7.2.1 Subcontractor Trades
279(1)
7.2.2 Made-to-Stock and Made-to-Order Component Suppliers
280(1)
7.2.3 Engineered-to-Order Component Fabricators
281(1)
7.2.4 Design Service Providers and Specialist Coordinators
282(1)
7.2.5 Full-Service Design-Build Prefabricated and Modular Construction
283(1)
7.3 The Benefits of a BIM Process for Subcontractor Fabricators
283(15)
7.3.1 Marketing and Tendering
285(1)
7.3.2 Reduced Production Cycle Times
286(1)
7.3.3 Reduced Design Coordination Errors
287(4)
7.3.4 Lower Engineering and Detailing Costs
291(1)
7.3.5 Increased Use of Automated Manufacturing Technologies
292(1)
7.3.6 Increased Preassembly, Prefabrication, and Modular Construction
293(3)
7.3.7 Quality Control, Supply Chain Management, and Lifecycle Maintenance
296(2)
7.4 Generic BIM System Requirements for Fabricators
298(7)
7.4.1 Parametric and Customizable Parts and Relationships
298(4)
7.4.2 Reporting Components for Fabrication
302(1)
7.4.3 Interface to Management Information Systems
303(1)
7.4.4 Interoperability
303(1)
7.4.5 Information Visualization
304(1)
7.4.6 Automation of Fabrication Tasks
304(1)
7.5 Specific BIM Requirements for Fabrication
305(12)
7.5.1 Traditional ETO Component Fabricators
306(8)
7.5.2 Modular Construction
314(1)
7.5.3 3D Printing and Robotic Construction
315(2)
7.6 Adopting BIM in a Fabrication Operation
317(5)
7.6.1 Setting Appropriate Goals
317(1)
7.6.2 Adoption Activities
318(2)
7.6.3 Planning the Pace of Change
320(1)
7.6.4 Human Resource Considerations
321(1)
Discussion Questions
322(1)
Chapter 8 Facilitators of BIM Adoption and Implementation 323(41)
8.0 Executive Summary
323(1)
8.1 Introduction
324(1)
8.2 BIM Mandates
324(6)
8.2.1 Significance of Government BIM Mandates
325(1)
8.2.2 The Status of Government BIM Mandates around the World
325(2)
8.2.3 Motivations
327(1)
8.2.4 BIM Requirements
328(1)
8.2.5 Challenges and Considerations
329(1)
8.3 BIM Roadmaps, Maturity Models, and Measures
330(10)
8.3.1 BIM Roadmaps
330(5)
8.3.2 BIM Maturity Models
335(4)
8.3.3 BIM Measures
339(1)
8.4 BIM Guides
340(5)
8.4.1 BIM Guides by Region and Organization
340(2)
8.4.2 BIM Guides by Topic
342(3)
8.5 BIM Education and Training
345(13)
8.5.1 Transition of Senior Staff
346(1)
8.5.2 BIM Roles and Responsibilities
346(3)
8.5.3 Industry Training and Certificate Programs
349(6)
8.5.4 University Education Programs
355(1)
8.5.5 Considerations for Training and Deployment
356(2)
8.6 Legal, Security, and Best Practice Issues
358(3)
8.6.1 Legal and Intellectual Property Issues
358(2)
8.6.2 Cyber Security for BIM
360(1)
8.6.3 Best Practices and Other Social Issues
361(1)
Acknowledgments
361(1)
Discussion Questions
362(2)
Chapter 9 The Future: Building with BIM 364(34)
9.0 Executive Summary
364(2)
9.1 Introduction
366(1)
9.2 BIM Before 2000: Predicting Trends
367(3)
9.3 Development and Impact of BIM: 2000 to 2017
370(6)
9.3.1 Impact on Owners: Better Options, Better Reliability
371(2)
9.3.2 Impact on the Design Professions
373(1)
9.3.3 Impact on Construction Companies
373(1)
9.3.4 Impact on Building Material and Component Suppliers
374(1)
9.3.5 Impact on Construction Education: Integrated Education
374(1)
9.3.6 Impact on Statutory Authorities: Model Access and Review
375(1)
9.3.7 Impact on Project Documentation: On-Demand Drawings
375(1)
9.3.8 Impact on BIM Tools: More Integration, More Specialization, More Information
376(1)
9.4 Current Trends
376(10)
9.4.1 Process Trends
377(4)
9.4.2 Technology Trends
381(1)
9.4.3 Integrative Process and Technology Trends
382(1)
9.4.4 Trends in BIM Research
383(2)
9.4.5 Obstacles to Change
385(1)
9.5 Vision 2025
386(8)
9.5.1 Thoroughly Digital Design and Construction
387(1)
9.5.2 A New Culture of Innovation in Construction
388(1)
9.5.3 Off-site Construction
389(1)
9.5.4 Construction Regulation: Automated Code-Checking
390(1)
9.5.5 Artificial Intelligence in Construction
391(2)
9.5.6 Globalization
393(1)
9.5.7 Support for Sustainable Construction
393(1)
9.6 Beyond 2025
394(3)
Acknowledgment
397(1)
Discussion Questions
397(1)
Chapter 10 BIM Case Studies 398(216)
10.0 Introduction
398(7)
Acknowledgments
401(4)
10.1 National Children's Hospital, Dublin
405(14)
10.1.1 Introduction
405(1)
10.1.2 Motivation for the Project
406(1)
10.1.3 The Building
406(1)
10.1.4 The NCH Project
407(1)
10.1.5 The BIM Execution Plan (BEP)
408(4)
10.1.6 Visualization, Simulation, and Design Optimization
412(6)
10.1.7 Summary of BIM Benefits
418(1)
Acknowledgments
419(1)
10.2 Hyundai Motorstudio Goyang, South Korea
419(18)
10.2.1 Project Overview
419(3)
10.2.2 Complex Spatial Arrangement: BIM-Based Design Coordination
422(1)
10.2.3 Free-Form Patterned Exterior: Panelization
423(3)
10.2.4 Mega Truss Structure: Laser Scanning
426(4)
10.2.5 Perception Gap between Participants: VR and 4D Simulation
430(3)
10.2.6 Needs for Schedule Reduction: Multi-trade Prefabrication
433(3)
10.2.7 Lessons Learned and Conclusion
436(1)
Acknowledgments
437(1)
10.3 Fondation Louis Vuitton, Paris
437(14)
10.3.1 Introduction
437(1)
10.3.2 Project Design Workflow and Software Technology
438(3)
10.3.3 Design of the Structure and Sails
441(1)
10.3.4 Model Analyses
442(1)
10.3.5 Generative Detailing Using 3D Intelligent Components
443(2)
10.3.6 Concrete Iceberg Panelization and Optimization for Fabrication
445(1)
10.3.7 Fabrication of the Glass Sails
446(2)
10.3.8 Integrated Use of the BIM Model
448(1)
10.3.9 Lessons Learned
449(1)
10.3.10 Conclusion
450(1)
Acknowledgments
451(1)
10.4 Dongdaemun Design Plaza, Seoul, South Korea
451(17)
10.4.1 Introduction
451(1)
10.4.2 Challenges during the Design Phase
452(4)
10.4.3 Challenges during the Construction Phase
456(4)
10.4.4 BIM to Fabrication
460(4)
10.4.5 Lessons Learned
464(3)
10.4.6 Conclusion and Future Outlook
467(1)
Acknowledgments
468(1)
10.5 Saint Joseph Hospital, Denver
468(14)
10.5.1 Organizational Structure and the Collaboration Agreement
469(2)
10.5.2 The BIM Execution Plan
471(3)
10.5.3 Simulations and Analyses
474(1)
10.5.4 BIM Support for Prefabrication
474(3)
10.5.5 Ensuring Metrics Help Inform Future Efforts
477(1)
10.5.6 Risk and Safety Benefits of BIM and Prefabrication
478(1)
10.5.7 BIM in the Field
479(1)
10.5.8 BIM for Facility Management
479(1)
10.5.9 Lessons Learned: Best Practices
480(1)
Acknowledgments
481(1)
Online Sources
481(1)
10.6 Victoria Station, London Underground
482(17)
10.6.1 History
482(1)
10.6.2 The Project
483(4)
10.6.3 Engineering Challenges
487(1)
10.6.4 The Role of BIM
488(9)
10.6.5 BIM Benefits to the Project
497(1)
10.6.6 Postscript
498(1)
Acknowledgments
498(1)
10.7 Nanyang Technological University Student Residence Halls, Singapore
499(23)
10.7.1 Introduction
499(1)
10.7.2 Project Overview
499(4)
10.7.3 Project Organization/Management
503(1)
10.7.4 PPVC Workflow
503(5)
10.7.5 BIM Implementation
508(1)
10.7.6 Parametric PPVC Library
509(9)
10.7.7 Benefits Realization
518(2)
10.7.8 Conclusion and Lessons Learned
520(2)
Acknowledgments
522(1)
10.8 Mapletree Business City II, Singapore
522(32)
10.8.1 Introduction
522(6)
10.8.2 Communication and Collaboration Issues
528(1)
10.8.3 BIM Coordination Meetings
529(3)
10.8.4 BIM Execution Planning
532(1)
10.8.5 Data Exchange
532(1)
10.8.6 Productivity Gains
533(2)
10.8.7 Innovative Uses of BIM
535(6)
10.8.8 Simulation and Analysis
541(3)
10.8.9 BIM in the Field
544(8)
10.8.10 Conclusion
552(2)
Acknowledgments
554(1)
10.9 Prince Mohammad Bin Abdulaziz International Airport, Medina, UAE
554(20)
10.9.1 Project Information
554(1)
10.9.2 Novel/Innovative Use of BIM
555(3)
10.9.3 Communication and Collaboration
558(1)
10.9.4 Stakeholder Involvement
559(2)
10.9.5 Risk
561(5)
10.9.6 BIM in the Field
566(1)
10.9.7 Lessons Learned: Problems, Challenges, Solutions
567(6)
10.9.8 Conclusion and Future Outlook
573(1)
Acknowledgments
574(1)
10.10 Howard Hughes Medical Institute, Chevy Chase, Maryland
574(10)
10.10.1 Introduction
574(1)
10.10.2 Background
575(1)
10.10.3 The Challenges
576(1)
10.10.4 An FM-Capable BIM
577(3)
10.10.5 Impact Analysis Using an FM-Capable BIM
580(2)
10.10.6 Lessons Learned Thus Far
582(1)
10.10.7 The Path Forward
583(1)
Acknowledgments
583(1)
10.11 Stanford Neuroscience Health Center, Palo Alto, California
584(30)
10.11.1 Introduction
584(2)
10.11.2 Project Details
586(1)
10.11.3 The Pilot
587(1)
10.11.4 Making the Case
588(1)
10.11.5 The Journey
589(1)
10.11.6 The Team
589(2)
10.11.7 Executing the Pilot
591(3)
10.11.8 Use Case Metrics
594(6)
10.11.9 Results of Use Cases
600(5)
10.11.10 Summary of Benefits
605(2)
10.11.11 BIM Costs and Impact on Annual Budget
607(1)
10.11.12 Lessons Learned
608(5)
10.11.13 Conclusion and Future Outlook
613(1)
Acknowledgments
613(1)
Glossary 614(9)
References 623(16)
Index 639
Rafael Sacks is a Professor of Civil Engineering and leads the Virtual Construction Lab at the Technion - Israel Institute of Technology.

Charles Eastman is Professor Emeritus in the College of Architecture at Georgia Tech. He founded the Digital Building Laboratory.

Ghang Lee is a Professor and the Director of the Building Informatics Group at Yonsei University in Seoul, Korea.

Paul Teicholz is Professor Emeritus at Stanford University. He founded the Center for Integrated Facility Engineering at Stanford University.