Atjaunināt sīkdatņu piekrišanu

Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory: Volume III: from Categories to Structured Ring Spectra [Mīkstie vāki]

  • Formāts: Paperback / softback, 598 pages, height x width: 254x178 mm
  • Sērija : Mathematical Surveys and Monographs 285
  • Izdošanas datums: 30-Nov-2024
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470478110
  • ISBN-13: 9781470478117
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 153,55 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 598 pages, height x width: 254x178 mm
  • Sērija : Mathematical Surveys and Monographs 285
  • Izdošanas datums: 30-Nov-2024
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470478110
  • ISBN-13: 9781470478117
Citas grāmatas par šo tēmu:
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories, Volume II: Braided Bimonoidal Categories with Applications, and Volume III: From Categories to Structured Ring Spectra-this book) provide a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user-friendly resource for beginners and experts alike. Part 1 of this book is a detailed study of enriched monoidal categories, pointed diagram categories, and enriched multicategories. Using this machinery, Part 2 discusses the rich interconnection between the higher ring-like categories, homotopy theory, and algebraic $K$-theory. Starting with a chapter on homotopy theory background, the first half of Part 2 constructs the Segal $K$-theory functor and the Elmendorf-Mandell $K$-theory multifunctor from permutative categories to symmetric spectra. For the latter, the detailed treatment here includes identification and correction of some subtle errors concerning its extended domain. The second half applies the $K$-theory multifunctor to small ring, bipermutative, braided ring, and $E_n$-monoidal categories to obtain, respectively, strict ring, $E_{\infty}$-, $E_2$-, and $E_n$-symmetric spectra.
Enriched monoidal categories and multicategories
Enriched monoidal categories
Change of enrichment
Self-enrichment and enriched Yoneda
Pointed objects, smash products, and pointed homs
Multicategories
Enriched multicategories
Algebraic $K$-theory
Homotopy theory background
Segal $K$-theory of permutative categories
Categories of $\mathcal{G}_*$-objects
Elmendorf-Mandell $K$-theory of permutative categories
$K$-theory of ring and bipermutative categories
$K$-theory of braided ring categories
$K$-theory of $E_n$-monoidal categories
Bibliography and indices
Open questions
Bibliography
List of main facts
List of notations
Index
Niles Johnson, The Ohio State University at Newark, OH, and Donald Yau, The Ohio State University at Newark, OH