Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine

(University of Connecticut Health Center, USA), (Graduate Research Assistant, The Pennsylvania State University, USA), (Associate Professor of Biomedical Engineering, The Pennsylvania State University, USA)
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Nov-2016
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128033999
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 164,36 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Nov-2016
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128033999
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine explores musculoskeletal tissue growth and development across populations, ranging from elite athletes to the elderly. The regeneration and reparation of musculoskeletal tissues present the unique challenges of requiring both the need to withstand distinct forces applied to the body and ability to support cell populations.

The book is separated into sections based on tissue type, including bone, cartilage, ligament and tendon, muscle, and musculoskeletal tissue interfaces. Within each tissue type, the chapters are subcategorized into strategies focused on cells, hydrogels, polymers, and other materials (i.e. ceramics and metals) utilized in musculoskeletal tissue engineering applications.

In each chapter, the relationships that exist amongst the strategy, stem cell differentiation and somatic cell specialization at the intracellular level are emphasized. Examples include intracellular signaling through growth factor delivery, geometry sensing of the surrounding network, and cell signaling that stems from altered population dynamics.

  • Presents a self-contained work for the field of musculoskeletal tissue engineering and regenerative medicine
  • Focuses on how materials of structures can be designed to be resistant while promoting viable grafts
  • Contains major tissue types that are covered with a strategy for each material and structure

Papildus informācija

Explores musculoskeletal tissue growth and development across tissue types and populations, ranging from elite athletes to the elderly
Contributors xi
Part I Introduction
1 Bio-Instructive Cues in Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine
K.L. Collins
E.M. Gates
C.L. Gilchrist
B.D. Hoffman
1.1 Introduction
3(2)
1.1.1 Role of the Cellular Microenvironment
4(1)
1.1.2 Current Challenges
4(1)
1.2 The Cellular Microenvironment: Key Aspects
5(6)
1.2.1 What is the Microenvironment?
5(2)
1.2.2 Components of the Microenvironment
7(4)
1.3 Recapitulation of Cellular Microenvironments With Bioinstructive Scaffolds
11(6)
1.3.1 Natural Versus Synthetic Biomaterials
11(1)
1.3.2 Engineering Biochemical Properties
12(2)
1.3.3 Engineering Physical Properties
14(3)
1.3.4 Summary
17(1)
1.4 Cellular Detection of the Microenvironment
17(7)
1.4.1 Biochemical Signals
17(1)
1.4.2 Biophysical Signals
18(6)
1.5 Responding to the Microenvironment
24(2)
1.6 Conclusion
26(11)
References
27(10)
2 Functionalizing With Bioactive Peptides to Generate Bio-Instructive Scaffolds
S. Mahzoon
T.J. Siahaan
M.S. Detamore
2.1 Adhesion Molecules
37(2)
2.1.1 Adhesion Receptors
37(1)
2.1.2 Adhesion Receptor-Binding Peptides
38(1)
2.2 Methods of Identifying Cell-Binding Peptides
39(3)
2.3 Peptides in Tissue Engineering
42(4)
2.3.1 Self-Assembled Peptide Scaffolds
42(1)
2.3.2 Cell-Binding Peptides
42(4)
2.4 Conclusion
46(10)
Acknowledgments
47(1)
References
47(9)
Part II Bone
3 Bio-Instructive Scaffolds for Bone Regeneration
F. Han
C. Zhu
L. Chen
J. Wicks
B. Li
3.1 Introduction
56(1)
3.2 Commonly Used Linear Polymers in Bone Tissue Engineering
57(12)
3.2.1 Natural Materials
57(6)
3.2.2 Synthetic Polymers
63(5)
3.2.3 Hybrid Materials
68(1)
3.3 Interactions Between Materials and Cells
69(6)
3.3.1 The Effect of Material Morphology on Cells: Geometry Sensing of the Surrounding Network
69(4)
3.3.2 Other Factors
73(2)
3.4 Bioactive Modification of Linear Polymers for Bone Regeneration
75(3)
3.4.1 Delivery of Bioactive Substances
75(1)
3.4.2 Surface Modification
76(2)
3.5 Concluding Remarks
78(9)
Acknowledgments
79(1)
References
79(8)
Part III Tendon/Ligament
4 Bio-Instructive Scaffolds for Tendon/Ligament Regeneration
P.S. Thayer
A.S. Goldstein
4.1 Introduction
87(2)
4.1.1 Anterior Cruciate Ligament: Physical Properties and Treatment Options
87(1)
4.1.2 Tendon/Ligament Tissue Engineering
88(1)
4.2 Synthetic Polymer Scaffolds
89(8)
4.2.1 Linear Degradable Polymers
89(1)
4.2.2 Braided Fibrous Scaffolds
90(3)
4.2.3 Knitted Fibrous Scaffolds
93(1)
4.2.4 Electrospun Nonwoven Micro-Fiber Networks
94(3)
4.3 Bioactive Materials
97(3)
4.3.1 Blending and Encapsulation
97(1)
4.3.2 Adsorption
98(1)
4.3.3 Conjugation
99(1)
4.3.4 Conclusions
100(1)
4.4 Composite Materials
100(1)
4.5 Graded Materials
101(3)
4.5.1 Bone Insertion Site
101(2)
4.5.2 Muscle Attachment
103(1)
4.5.3 Conclusions
104(1)
4.6 Conclusions and Future Directions
104(11)
References
105(10)
Part IV Cartilage
5 Bio-Instructive Scaffolds for Cartilage Regeneration
N. Mistry
J. Moskow
N.B. Shelke
S. Yadav
W.S.V. Berg-Foels
S.G. Kumbar
5.1 Introduction
115(2)
5.2 Structure and Function of Cartilage
117(3)
5.3 Cells Used for Cartilage Regeneration
120(1)
5.4 Growth Factors and Their Mechanisms That Effect Differentiation
121(1)
5.5 ECM-Derived Scaffolds
122(1)
5.6 Scaffolds Fabricated From Natural Polymers
123(2)
5.7 Synthetic Polymer Scaffolds
125(2)
5.8 Nanostructured Scaffolds
127(1)
5.9 Maintenance of Neotissue
128(3)
5.10 Conclusion
131(8)
Acknowledgments
131(1)
References
131(8)
Part V Muscle
6 Ultrastructure and Biomechanics of Skeletal Muscle ECM: Implications in Tissue Regeneration
B. Brazile
S. Lin
K.M. Copeland
J.R. Butler
J. Cooley
E. Brinkman-Ferguson
J. Guan
J. Liao
6.1 Skeletal Muscle Injury and Regenerative Strategy
139(1)
6.2 Major Components of Skeletal Muscle ECM
140(2)
6.2.1 The Epimysium
141(1)
6.2.2 The Perimysium
141(1)
6.2.3 The Endomysium
142(1)
6.2.4 The Basement Membrane
142(1)
6.3 Ultrastructure and Functionalities of the Skeletal Muscle ECM
142(3)
6.3.1 Ultrastructure of Endomysial ECM and Its Force Transmission Role
142(1)
6.3.2 Ultrastructure of Perimysial ECM and Its Interaction With Myocytes and Tendon
143(1)
6.3.3 Epimysium ECM and Its Force Transmission Role
144(1)
6.3.4 Ultrastructure of Basement Membrane and Its Binding Function
144(1)
6.3.5 Biomechanical Functionalities of the Skeletal Muscle ECM
144(1)
6.4 Biomechanical Properties of Skeletal Muscle and Skeletal Muscle ECM
145(6)
6.4.1 Passive Biomechanical Properties of Skeletal Muscle
146(1)
6.4.2 A Comparative Study Between Porcine Skeletal Muscle and Skeletal Muscle ECM
147(4)
6.5 The Implications in Skeletal Muscle Regeneration
151(2)
6.5.1 Skeletal Muscle ECM as Graft Material
151(1)
6.5.2 Acellular Skeletal Muscle ECM Hydrogel for Injection Therapy
152(1)
6.6 Summary
153(8)
Acknowledgment
155(1)
References
155(6)
7 Bio-Instructive Scaffolds for Muscle Regeneration: NonCrosslinked Polymers
L. Altomare
S. Fare
M. Cristina Tanzi
7.1 Skeletal Muscle Physiology
161(1)
7.2 Scaffolds' Materials and Fabrication Techniques
162(9)
7.2.1 Synthetic Polymeric Materials
163(4)
7.2.2 Fabrication Techniques
167(4)
7.3 2D Topographical Configurations
171(7)
7.3.1 2D Patterning
171(3)
7.3.2 Electrospun Aligned Fiber Mats
174(4)
7.4 3D Topographical Configurations
178(5)
7.4.1 Microgrooved Scaffolds
178(3)
7.4.2 Scaffolds With Aligned Pores
181(2)
7.5 Conclusions
183(7)
References
183(7)
8 Bio-Instructive Scaffolds for Skeletal Muscle Regeneration: Conductive Materials
J.W. Freeman
O.P. Browe
8.1 Progress of Skeletal Muscle Tissue Engineering
190(13)
References
197(6)
Part VI Musculoskeletal Interfaces
9 Bio-Instructive Scaffolds for Musculoskeletal Interfaces
B.L. Banik
D.T. Bowers
P. Fattahi
J.L. Brown
9.1 Background
203(1)
9.2 Muscle Interfaces
203(9)
9.2.1 Myotendinous Junctions 3D Scaffolds
204(1)
9.2.2 Neuromuscular Junctions 3D Scaffolds
205(5)
9.2.3 Vascularization
210(2)
9.2.4 Conclusions
212(1)
9.3 Cartilage Bone Interface Section
212(8)
9.3.1 The Bone Cartilage Interface
213(1)
9.3.2 Gradient Biomaterials
214(2)
9.3.3 Tissue Adhesives
216(1)
9.3.4 Composite and Drug Releasing Scaffolds
217(1)
9.3.5 Scaffold-Free Constructs
217(1)
9.3.6 Cell Sheet Technologies
218(1)
9.3.7 Dual Phase Scaffolds
219(1)
9.3.8 Conclusions
220(1)
9.4 Bone: Tendon, Bone: Ligament Interface
220(6)
9.4.1 Interface Anatomy
221(1)
9.4.2 Stratified Scaffold Design
221(1)
9.4.3 Cell Gradients
222(2)
9.4.4 Material Gradients
224(1)
9.4.5 Biochemical Gradients
225(1)
9.4.6 Conclusions
226(1)
9.5 Summary
226(9)
References
227(8)
Index 235
Justin Brown is an Associate Professor of Biomedical Engineering at the Pennsylvania State University. He received his Ph.D. (Biomedical Engineering) and studied as a postdoctoral fellow (Cell and Molecular Biology) at the University of Virginia. His Ph.D. research focused on the use of novel biodegradable polyphosphazenes and poly(L-lactide) to construct novel scaffolds for bone tissue engineering presenting both micro and nanostructures. His postdoctoral research focused on MAPK signaling in osteoblasts in response to synthetic nanofiber architectures. His current research interests are fundamental mechanisms stem cells use to sense and respond to translational biomaterial interfaces. Dr. Kumbar is an Assistant Professor in the Departments of Orthopaedic Surgery, Materials Science & Engineering and Biomedical Engineering at the University of Connecticut. His research is focused on synthesis and characterization of novel biomaterials for tissue engineering and drug delivery applications. These polymeric materials namely polysaccharides, polyphosphazenes, polyanhydrides, polyesters as well as blends of two or more of the polymeric materials and composites combining the polymeric materials with ceramics in the form of 3-dimentional porous structures will serve as scaffolds for variety of tissue engineering applications. Dr. Kumbar is an active member of Society for Biomaterials (SFB), Controlled Release Society (CRS), Materials Research Society (MRS) and Orthopaedic Research Society (ORS). Dr. Kumbar is serving as a reviewer for more than 25 journals in the field of biomaterials, drug delivery and tissue engineering. He has recently edited a book Natural and Synthetic Biomedical Polymers” Elsevier Science & Technology, 2014- ISBN: 978-0-12-396983-5. He is also on the Editorial Board of more than 7 journals in the area of his expertise including Journal of Biomedical Materials Research-Part B, Journal of Applied Polymer Science, and Journal of Biomedical Nanotechnology. Brittany Banik is a Graduate Research Assistant in the Department of Biomedical Engineering at The Pennsylvania State University. She received a B.S. in Bioengineering and minor in Mathematical Sciences from Clemson University. She currently works as a National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellow in Dr. Justin Browns Musculoskeletal Regenerative Engineering Laboratory. Her Ph.D. research investigates a novel scaffold design for tendon tissue engineering. She has previously been involved in projects related to nanomedicine, drug delivery, and cellular mechanotransduction.