Atjaunināt sīkdatņu piekrišanu

Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications [Hardback]

Edited by (Division of Biological and Health Sciences, University of Pittsburgh)
  • Formāts: Hardback, 384 pages, height x width x depth: 253x175x25 mm, weight: 767 g
  • Izdošanas datums: 05-Jun-2015
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1118677684
  • ISBN-13: 9781118677681
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 172,99 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 384 pages, height x width x depth: 253x175x25 mm, weight: 767 g
  • Izdošanas datums: 05-Jun-2015
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1118677684
  • ISBN-13: 9781118677681
Citas grāmatas par šo tēmu:
Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries including communications, medicine, transportation, and agriculture. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology.

Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use.

Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.

Introduces a variety of microorganisms and their ability to synthesize nanoparticles

Outlines methodologies used to biosynthesize a variety of nanoparticles for medical and commercial use

Reviews literature on the diversity of microorganisms able to synthesize various nanoparticles

Discusses mechanisms of microbial metabolism in ionic environments, which turn metal ions into metal elements

Explores the United States EPA, FDA, and Department of Agriculture (DA)'s regulation and global competency to regulate nanoparticles in therapeutics and biotechnological sectors

Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries, including communications, medicine, transportation, agriculture and other industries. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology.

Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use.

Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.
List of Contributors xv
Introduction xvii
1 Diversity Of Microbes In Synthesis Of Metal Nanoparticles: Progress And Limitations 1(30)
Mahendra Rai
Irena Maliszewska
Avinash Ingle
Indarchand Gupta
Alka Yadav
1.1 Introduction
1(1)
1.2 Synthesis of Nanoparticles by Bacteria
2(7)
1.3 Synthesis of Nanoparticles by Fungi
9(3)
1.4 Synthesis of Nanoparticles by Algae
12(4)
1.5 Applications of Metal Nanoparticles
16(2)
1.5.1 Nanoparticles as Catalyst
16(1)
1.5.2 Nanoparticles as Bio-membranes
17(1)
1.5.3 Nanoparticles in Cancer Treatment
17(1)
1.5.4 Nanoparticles in Drug Delivery
17(1)
1.5.5 Nanoparticles for Detection and Destruction of Pesticides
17(1)
1.5.6 Nanoparticles in Water Treatment
18(1)
1.6 Limitations of Synthesis of Biogenic Nanoparticles
18(2)
References
20(11)
2 Role Of Fungi Toward Synthesis Of Nano-Oxides 31(22)
Rajesh Ramanathan
Vipul Bansal
2.1 Introduction
31(3)
2.2 Fungus-mediated Synthesis of Nanomaterials
34(12)
2.2.1 Biosynthesis of Binary Nano-oxides using Chemical Precursors
34(5)
2.2.2 Biosynthesis of Complex Mixed-metal Nano-oxides using Chemical Precursors
39(3)
2.2.3 Biosynthesis of Nano-oxides using Natural Precursors Employing Bioleaching Approach
42(2)
2.2.4 Biosynthesis of Nano-oxides Employing Bio-milling Approach
44(2)
2.3 Outlook
46(1)
References
47(6)
3 Microbial Molecular Mechanisms In Biosynthesis Of Nanoparticles 53(30)
Atmakuru Ramesh
Marimuthu Thiripura Sundari
Perumal Elumalai Thirugnanam
3.1 Introduction
53(1)
3.2 Chemical Synthesis of Metal Nanoparticles
54(3)
3.2.1 Brust—Schiffrin Synthesis
55(2)
3.3 Green Synthesis
57(1)
3.4 Biosynthesis of Nanoparticles
58(3)
3.5 Mechanisms for Formation or Synthesis of Nanoparticles
61(8)
3.5.1 Biomineralization using Magnetotactic Bacteria (MTB)
61(1)
3.5.2 Reduction of Tellurite using Phototroph Rhodobacter capsulatus
62(1)
3.5.3 Formation of AgNPs using Lactic Acid and Bacteria
62(1)
3.5.4 Microfluidic Cellular Bioreactor for the Generation of Nanoparticles
62(3)
3.5.5 Proteins and Peptides in the Synthesis of Nanoparticles
65(1)
3.5.6 NADH-dependent Reduction by Enzymes
65(1)
3.5.7 Sulfate and Sulfite Reductase
66(1)
3.5.8 Cyanobacteria
67(1)
3.5.9 Cysteine Desulfhydrase in Rhodopseudomonas palustris
68(1)
3.5.10 Nitrate and Nitrite reductase
68(1)
3.6 Extracellular Synthesis of Nanoparticles
69(7)
3.6.1 Bacterial Excretions
69(2)
3.6.2 Fungal Strains
71(1)
3.6.3 Yeast: Oxido-reductase Mechanism
72(1)
3.6.4 Plant Extracts
73(3)
3.7 Conclusion
76(2)
References
78(5)
4 Biofilms In Bio-Nanotechnology: Opportunities And Challenges 83(18)
Chun Kiat Ng
Anee Mohanty
Bin Cao
4.1 Introduction
83(1)
4.2 Microbial Synthesis of Nanomaterials
84(6)
4.2.1 Overview
84(5)
4.2.2 Significance of Biofilms in Biosynthesis of Nanomaterials
89(1)
4.2.3 Synthesis of Nanomaterials using Biofilms
90(1)
4.3 Interaction of Microbial Biofilms with Nanomaterials
90(3)
4.3.1 Nanomaterials as Anti-biofilm Agents
90(2)
4.3.2 Nanomaterials as a Tool in Biofilm Studies
92(1)
4.4 Future Perspectives
93(1)
References
94(7)
5 Extremophiles And Biosynthesis Of Nanoparticles: Current And Future Perspectives 101(22)
Jingyi Zhang
Jetka Wanner
Om V. Singh
5.1 Introduction
101(3)
5.2 Synthesis of Nanoparticles
104(4)
5.2.1 Microorganisms: An Asset in Nanoparticle Biosynthesis
104(1)
5.2.2 Extremophiles in Nanoparticle Biosynthesis
104(4)
5.3 Mechanism of Nanoparticle Biosynthesis
108(3)
5.4 Fermentative Production of Nanoparticles
111(3)
5.5 Nanoparticle Recovery
114(1)
5.6 Challenges and Future Perspectives
115(1)
5.7 Conclusion
115(1)
References
116(7)
6 Biosynthesis Of Size-Controlled Metal And Metal Oxide Nanoparticles By Bacteria 123(18)
Chung-Hao Kuo
David A. Kriz
Anton Gudz
Steven L. Suib
6.1 Introduction
123(1)
6.2 Intracellular Synthesis of Metal Nanoparticles by Bacteria
124(5)
6.3 Extracellular Synthesis of Metal Nanoparticles by Bacteria
129(2)
6.4 Synthesis of Metal Oxide and Sulfide Nanoparticles by Bacteria
131(4)
6.5 Conclusion
135(1)
References
135(6)
7 Methods Of Nanoparticle Biosynthesis For Medical And Commercial Applications 141(14)
Shilpi Mishra
Saurabh Dixit
Shivani Soni
7.1 Introduction
141(3)
7.2 Biosynthesis of Nanoparticles using Bacteria
144(2)
7.2.1 Synthesis of Silver Nanoparticles by Bacteria
144(1)
7.2.2 Synthesis of Gold Nanoparticles by Bacteria
145(1)
7.2.3 Synthesis of other Metallic Nanoparticles by Bacteria
145(1)
7.3 Biosynthesis of Nanoparticles using Actinomycete
146(1)
7.4 Biosynthesis of Nanoparticles using Fungi
147(1)
7.5 Biosynthesis of Nanoparticles using Plants
148(1)
7.6 Conclusions
149(1)
References
149(6)
8 Microbial Synthesis Of Nanoparticles: An Overview 155(32)
Sneha Singh
Ambarish Sharan Vidyarthi
Abhimanyu Dev
8.1 Introduction
156(1)
8.2 Nanoparticles Synthesis Inspired by Microorganisms
157(17)
8.2.1 Bacteria in NPs Synthesis
162(5)
8.2.2 Fungi in NPs Synthesis
167(3)
8.2.3 Actinomycetes in NPs Synthesis
170(1)
8.2.4 Yeast in NPs Synthesis
171(2)
8.2.5 Virus in NPs Synthesis
173(1)
8.3 Mechanisms of Nanoparticles Synthesis
174(2)
8.4 Purification and Characterization of Nanoparticles
176(1)
8.5 Conclusion
177(2)
References
179(8)
9 Microbial Diversity Of Nanoparticle Biosynthesis 187(18)
Raveendran Sindhu
Ashok Pandey
Parameswaran Binod
9.1 Introduction
187(1)
9.2 Microbial-mediated Nanoparticles
187(11)
9.2.1 Gold
188(2)
9.2.2 Silver
190(1)
9.2.3 Selenium
191(1)
9.2.4 Silica
192(1)
9.2.5 Cadmium
192(1)
9.2.6 Palladium
193(1)
9.2.7 Zinc
193(1)
9.2.8 Lead
194(1)
9.2.9 Iron
195(1)
9.2.10 Copper
195(1)
9.2.11 Cerium
196(1)
9.2.12 Microbial Quantum Dots
196(1)
9.2.13 Cadmium Telluride
197(1)
9.2.14 Iron Sulfide-greigite
198(1)
9.3 Native and Engineered Microbes for Nanoparticle Synthesis
198(1)
9.4 Commercial Aspects of Microbial Nanoparticle Synthesis
199(1)
9.5 Conclusion
200(1)
References
200(5)
10 Sustainable Synthesis Of Palladium(0) Nanocatalysts And Their Potential For Organohalogen Compounds Detoxification 205(20)
Michael Bunge
Katrin Mackenzie
10.1 Introduction
205(1)
10.2 Chemically Generated Palladium Nanocatalysts for Hydrodechlorination: Current Methods and Materials
206(5)
10.2.1 Pd Catalysts
206(1)
10.2.2 Data Analysis
207(1)
10.2.3 Pd as Dehalogenation Catalyst
207(1)
10.2.4 Intrinsic Potential vs. Performance
208(2)
10.2.5 Concepts for Pd Protection
210(1)
10.3 Bio-supported Synthesis of Palladium Nanocatalysts
211(1)
10.3.1 Background
211(1)
10.4 Current Approaches for Synthesis of Palladium Catalysts in the Presence of Microorganisms
212(5)
10.4.1 Pd(II)-Tolerant Microorganisms for Future Biotechnological Approaches
213(1)
10.4.2 Controlling Size and Morphology during Bio-Synthesis
214(1)
10.4.3 Putative and Documented Mechanisms of Biosynthesis of Palladium Nanoparticles
215(1)
10.4.4 Isolation of Nanocatalysts from the Cell Matrix and Stabilization
216(1)
10.5 Bio-Palladium(0)-nanocatalyst Mediated Transformation of Organohalogen Pollutants
217(1)
10.6 Conclusions
218(1)
References
219(6)
11 Environmental Processing Of Zn Containing Wastes And Generation Of Nanosized Value-Added Products 225(30)
Abhilash
B.D. Pandey
11.1 Introduction
225(4)
11.1.1 World Status of Zinc Production
226(1)
11.1.2 Environmental Impact of the Process Wastes Generated
226(1)
11.1.3 Production Status in India
227(1)
11.1.4 Recent Attempts at Processing Low-Grade Ores and Tailings
228(1)
11.2 Physical/Chemical/Hydrothermal Processing
229(4)
11.2.1 Extraction of Pb-Zn from Tailings for Utilization and Production in China
229(1)
11.2.2 Vegetation Program on Pb-Zn Tailings
229(1)
11.2.3 Recovering Valuable Metals from Tailings and Residues
229(1)
11.2.4 Extraction of Vanadium, Lead and Zinc from Mining Dump in Zambia
230(1)
11.2.5 Recovery of Zinc from Blast Furnace and other Dust/Secondary Resources
230(1)
11.2.6 Treatment and Recycling of Goethite Waste
231(1)
11.2.7 Other Hydrometallurgical Treatments of Zinc-based Industrial Wastes and Residues
231(2)
11.3 Biohydrometallurgical Processing: International Scenario
233(5)
11.3.1 Bioleaching of Zn from Copper Mining Residues by Aspergillus niger
233(1)
11.3.2 Bioleaching of Zinc from Steel Plant Waste using Acidithiobacillus ferrooxidans
234(1)
11.3.3 Bacterial Leaching of Zinc from Chat (Chert) Pile Rock and Copper from Tailings Pond Sediment
234(1)
11.3.4 Dissolution of Zn from Zinc Mine Tailings
234(1)
11.3.5 Microbial Diversity in Zinc Mines
234(1)
11.3.6 Chromosomal Resistance Mechanisms of A. ferrooxidans on Zinc
235(1)
11.3.7 Bioleaching of Zinc Sulfides by Acidithiobacillus ferrooxidans
235(1)
11.3.8 Bioleaching of High-Sphalerite Material
235(1)
11.3.9 Bioleaching of Low-Grade ZnS Concentrate and Complex Sulfides (Pb-Zn) using Thermophilic Species
236(1)
11.3.10 Improvement of Stains for Bio-processing of Sphalerite
236(1)
11.3.11 Tank Bioleaching of ZnS and Zn Polymetallic Concentrates
237(1)
11.3.12 Large-Scale Development for Zinc Concentrate Bioleaching
237(1)
11.3.13 Scale-up Studies for Bioleaching of Low-Grade Sphalerite Ore
238(1)
11.3.14 Zinc Resistance Mechanism in Bacteria
238(1)
11.4 Biohydrometallurgical Processing: Indian Scenario
238(2)
11.4.1 Electro-Bioleaching of Sphalerite Flotation Concentrate
239(1)
11.4.2 Bioleaching of Zinc Sulfide Concentrate
239(1)
11.4.3 Bioleaching of Moore Cake and Sphalarite Tailings
239(1)
11.5 Synthesis of Nanoparticles
240(4)
11.6 Applications of Zinc-based Value-added Products/Nanomaterials
244(3)
11.6.1 Hydro-Gel for Bio-applications
244(1)
11.6.2 Sensors
244(1)
11.6.3 Biomedical Applications
245(1)
11.6.4 Antibacterial Properties
245(1)
11.6.5 Zeolites in biomedical applications
246(1)
11.6.6 Textiles
246(1)
11.6.7 Prospects of Zinc Recovery from Tailings and Biosynthesis of Zinc-based Nano-materials
246(1)
11.7 Conclusions and Future Directions
247(1)
References
248(7)
12 Interaction Between Nanoparticles And Plants: Increasing Evidence Of Phytotoxicity 255(18)
Rajeshwari Sinha
S.K. Khare
12.1 Introduction
255(1)
12.2 Plant—Nanoparticle Interactions
256(1)
12.3 Effect of Nanoparticles on Plants
256(1)
12.3.1 Monocot Plants
257(1)
12.3.2 Dicot Plants
257(1)
12.4 Mechanisms of Nanoparticle-induced Phytotoxicity
257(6)
12.4.1 Endocytosis
257(5)
12.4.2 Transfer through Ion Channels Post-ionization
262(1)
12.4.3 Aquaporin Mediated
262(1)
12.4.4 Carrier Proteins Mediated
262(1)
12.4.5 Via Organic Matter
262(1)
12.4.6 Complex Formation with Root Exudates
262(1)
12.4.7 Foliar Uptake
263(1)
12.5 Effect on Physiological Parameters
263(3)
12.5.1 Loss of Hydraulic Conductivity
263(1)
12.5.2 Genotoxic Effects
263(1)
12.5.3 Absorption and Accumulation
263(1)
12.5.4 Generation of Reactive Oxygen Species (ROS)
264(1)
12.5.5 Biotransformation of NPs
264(2)
12.6 Genectic and Molecular Basis of NP Phytotoxicity
266(1)
12.7 Conclusions and Future Perspectives
266(1)
References
267(6)
13 Cytotoxicology Of Nanocomposites 273(30)
Horacio Bach
13.1 Introduction
273(1)
13.2 Cellular Toxicity
274(7)
13.2.1 Mechanisms of Cellular Toxicity
274(2)
13.2.2 Effect of Glutathione (GSH) in Oxidative Stress
276(1)
13.2.3 Damage to Cellular Biomolecules
277(4)
13.3 Nanoparticle Fabrication
281(8)
13.3.1 Physicochemical Characteristics of NPs
282(2)
13.3.2 Cellular Uptake
284(3)
13.3.3 Factors Affecting the Internalization of NPs
287(2)
13.4 Immunological Response
289(3)
13.4.1 Cytokine Production
289(1)
13.4.2 Cytotoxicity, Necrosis, Apoptosis, and Cell Death
290(2)
13.5 Factors to Consider to Reduce the Cytotoxic Effects of NP
292(1)
13.6 Conclusions and Future Directions
293(1)
References
294(9)
14 Nanotechnology: Overview Of Regulations And Implementations 303(28)
Om V. Singh
Thomas Colonna
14.1 Introduction
303(2)
14.2 Scope of Nanotechnology
305(5)
14.3 Safety Concerns Related to Nanotechnology
310(1)
14.4 Barriers to the Desired Regulatory Framework
311(6)
14.4.1 Regulatory Framework in the United States
312(3)
14.4.2 Global Efforts toward Regulation of Nanotechnology
315(2)
14.5 Biosynthesis of Microbial Bio-nanoparticles: An Alternative Production Method
317(8)
14.6 Conclusion
325(1)
References
326(5)
Name index 331(2)
Subject index 333
Om V. Singh, PhD, is an Associate Professor of Microbiology at the University of Pittsburgh, Bradford in Bradford, PA, USA.