Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bioaugmentation for Groundwater Remediation

Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

?This volume provides a review of the past 10 to 15 years of intensive research, development and demonstrations that have been on the forefront of developing bioaugmentation into a viable remedial technology. This volume provides both a primer on the basic microbial processes involved in bioaugmentation, as well as a thorough summary of the methodology for implementing the technology. This reference volume will serve as a valuable resource for environmental remediation professionals who seek to understand, evaluate, and implement bioaugmentation.

Offering a useful reference for both practitioners and researchers, this book is both a primer on the basic microbial processes involved in bioaugmentation and a thorough summary of the methodology for implementing the technology.
Chapter 1 Bioaugmentation for Ground Water Remediation: An Overview
1(38)
1.1 Introduction
1(2)
1.1.1 Background: The Pollution Problem
1(1)
1.1.2 Definitions: General Bioremediation Terminology
2(1)
1.1.3
Chapter Overview
3(1)
1.2 Development of Bioaugmentation for Groundwater Bioremediation
3(3)
1.2.1 Historical Development of Bioaugmentation
3(1)
1.2.2 Recent Developments: Bioaugmentation with Dehalococcoides for Reductive Dehalogenation of Chlorinated Ethenes
4(2)
1.3 Types of Bioaugmentation
6(6)
1.3.1 Currently Practiced Methods
6(3)
1.3.2 Potential Bioaugmentation Strategies
9(3)
1.4 Making the Decision to Bioaugment
12(7)
1.4.1 Technical Analysis/Site Evaluation
14(1)
1.4.2 Select and Test Bioaugmentation Strategy
15(1)
1.4.3 Implement the Treatment
16(1)
1.4.4 Monitoring Effectiveness
17(2)
1.4.5 Other Considerations: Economics and Degradation Kinetics
19(1)
1.5 Bioaugmentation Issues
19(3)
1.5.1 Development of Effective Bioaugmentation Cultures
20(1)
1.5.2 Successful Inoculum Delivery and Dispersion
20(1)
1.5.3 Inoculum Survival
20(1)
1.5.4 Pollutant Bioavailability
21(1)
1.5.5 Potential Undesirable Side-Effects
21(1)
1.6 Bioaugmentation to Remediate Chlorinated Compounds
22(2)
1.6.1 Chlorinated Aliphatic Hydrocarbons (CAHs): Dehalococcoides and the Chloroethenes
23(1)
1.6.2 Applications for Other Chlorinated Compounds
24(1)
1.7 Bioaugmentation to Remediate Other Contaminants
24(4)
1.7.1 Petroleum and BTEX
25(1)
1.7.2 Polycyclic Aromatic Hydrocarbons (PAHs)
25(1)
1.7.3 Methyl Tert-Butyl Ether (MTBE)
26(1)
1.7.4 Pesticides
26(1)
1.7.5 Metals
27(1)
1.7.6 Mixed Pollutants
27(1)
1.8 Summary
28(11)
References
28(11)
Chapter 2 Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents
39(50)
2.1 Introduction
39(10)
2.1.1 The Chlorinated Ethene Problem
39(4)
2.1.2 Anaerobic Microbial Degradation of Chlorinated Ethenes
43(3)
2.1.3 Discovery of Dehalococcoides
46(3)
2.2 Dehalococcoides Isolation and Cultivation Strategies
49(3)
2.2.1 General Considerations
49(1)
2.2.2 Electron Acceptor
50(1)
2.2.3 Electron Donor
50(1)
2.2.4 Carbon Source
51(1)
2.2.5 Reducing Agent (Reductant)
51(1)
2.2.6 Incubation Conditions
52(1)
2.2.7 Isolation
52(1)
2.3 Dhc Pure Cultures
52(3)
2.3.1 Isolation of Dhc mccartyi Strain 195
52(1)
2.3.2 Isolation of Dhc sp. Strain CBDB1
53(1)
2.3.3 Isolation of Dhc sp. Strain FL2
53(1)
2.3.4 Isolation of Dhc Strains That Respire VC: Strains BAV1, GT and VS
53(1)
2.3.5 Isolation of Dhc Strain MB
54(1)
2.4 Maintenance of Dehalococcoides Pure Cultures
55(1)
2.4.1 General Considerations
55(1)
2.4.2 Growth Factors
55(1)
2.5 Dehalococcoides Morphology and Physiology
56(2)
2.6 Phylogeny of Dehalococcoides and Related Bacteria
58(3)
2.7 Dehalococcoides Genetics
61(3)
2.7.1 Insights from Dehalococcoides Genomes
61(2)
2.7.2 Dehalococcoides Reductive Dehalogenases Gene Operons
63(1)
2.8 Dehalococcoides Reductive Dehalogenases (RDASES)
64(1)
2.9 Biochemistry of Reductive Dechlorination by Dehalococcoides
65(2)
2.10 Dehalococcoides Biomarkers
67(5)
2.11 Dehalococcoides Evolution and Dissemination of Reductive Dehalogenase Genes
72(1)
2.12 Dehalococcoides Biogeography
73(1)
2.13 Dehalococcoides Ecology
74(1)
2.14 Outlook
75(1)
2.15 Implications for Bioremediation Practice: Take Home Messages
76(13)
References
76(13)
Chapter 3 Production and Handling of Dehalococcoides Bioaugmentation Cultures
89(28)
3.1 Introduction
89(2)
3.1.1 Microbial Cultures Used for Bioaugmentation
89(2)
3.1.2 Why High Density Microbial Cultures Are Important
91(1)
3.2 Growing Inocula
91(4)
3.2.1 Microbial Growth Options: Batch Versus Continuous
91(2)
3.2.2 Culture Growth Protocol
93(2)
3.3 Full-Scale Production Results
95(9)
3.3.1 Factors Affecting Culture Growth
99(5)
3.4 Quality Assurance/Quality Control Considerations
104(2)
3.4.1 Pathogen Analysis
104(1)
3.4.2 Dhc Concentrations
104(1)
3.4.3 Specific Activity
105(1)
3.4.4 Other QA/QC Considerations
106(1)
3.5 Concentrating and Storing Inocula
106(4)
3.5.1 Concentrating Cultures
107(2)
3.5.2 Culture Stability and Storage
109(1)
3.6 Shipping Cultures
110(1)
3.7 Onsite Handling
111(2)
3.7.1 Direct Injection
111(1)
3.7.2 Dilution
112(1)
3.7.3 Mixing with Other Reagents Before Injection
112(1)
3.8 Summary
113(4)
References
113(4)
Chapter 4 Bioaugmentation With Dehalococcoides: A Decision Guide
117(24)
4.1 Introduction
117(1)
4.2 Need for Decision Guidance
118(1)
4.3 Decision Guidance Overview
119(1)
4.4 Is Complete Dechlorination Occurring?
119(2)
4.5 Are the Site Conditions Inhibitory?
121(1)
4.6 Is the Site Highly Aerobic?
122(1)
4.7 Will Biostimulation Work?
123(8)
4.7.1 Laboratory Diagnostic Tests
124(4)
4.7.2 Field Testing
128(3)
4.8 How Valuable is Time?
131(1)
4.9 Is the Risk of Exposure to Toxic Intermediates Unacceptable?
132(1)
4.10 Economic Assessments of Bioaugmentation
132(2)
4.11 Summary and Recommendations
134(7)
References
135(6)
Chapter 5 Bioaugmentation Considerations
141(30)
5.1 Introduction
141(1)
5.2 Effect of Site Conditions on Effectiveness of Bioaugmentation
141(3)
5.2.1 Exposure to Oxygen
141(1)
5.2.2 Temperature and pH
142(1)
5.2.3 Competition for Electron Donor/Geochemical Conditions
142(1)
5.2.4 Volatile Organic Compound (VOC) Concentration
143(1)
5.2.5 Inhibitory Constituents
143(1)
5.2.6 Hydrogeology
144(1)
5.3 Field Methods
144(9)
5.3.1 Injection Infrastructure Considerations
144(1)
5.3.2 Preconditioning Requirements
145(3)
5.3.3 Culture Requirements
148(1)
5.3.4 Injection Techniques
148(4)
5.3.5 Distribution Techniques
152(1)
5.4 Bioremediation Configurations Employing Bioaugmentation
153(8)
5.4.1 Active Recirculation Approach
153(6)
5.4.2 Semi-Passive Approach
159(1)
5.4.3 Passive Approach
160(1)
5.5 Conclusions
161(10)
References
162(1)
Appendix 5A Background on Innoculum Density and Dechlorination Rates
162(9)
Chapter 6 Microbial Monitoring During Bioaugmentation with Dehalococcoides
171(28)
6.1 Introduction
171(2)
6.2 MBTs for Chlorinated Ethene Biodegradation
173(1)
6.3 Developing a Monitoring Strategy
174(1)
6.3.1 Defining Monitoring Objectives
174(1)
6.3.2 Temporal Considerations
174(1)
6.3.3 Selection of Sampling Wells
174(1)
6.4 MBT Sampling Methods
175(5)
6.4.1 General Sampling Considerations
175(2)
6.4.2 Groundwater Sampling Protocol
177(3)
6.5 Quantitative-PCR
180(5)
6.5.1 Description and General Methodology
180(2)
6.5.2 Standards
182(1)
6.5.3 Limitations
182(2)
6.5.4 Dhc Analysis
184(1)
6.5.5 Conclusion
185(1)
6.6 Fluorescent In Situ Hybridization
185(4)
6.6.1 Introduction
185(1)
6.6.2 Description and General Methodology
186(1)
6.6.3 Limitations
187(1)
6.6.4 Conjunctive Technologies
188(1)
6.6.5 Conclusion
188(1)
6.7 Community Profiling
189(4)
6.7.1 Gel Electrophoresis
189(1)
6.7.2 Cloning and Sequencing
189(1)
6.7.3 Terminal-Restriction Fragment Length Polymorphism
190(1)
6.7.4 Denaturing Gel Gradient Electrophoresis
190(1)
6.7.5 Temperature Gel Gradient Electrophoresis
190(1)
6.7.6 Microarrays and High-Throughput Sequencing
191(1)
6.7.7 Conclusion
192(1)
6.8 Data Evaluation and Interpretation of MBTs
193(1)
6.9 Future Research Needs
194(5)
References
194(5)
Chapter 7 Bioaugmentation For Aerobic Degradation Of CIS-1,2-Dichloroethene
199(20)
7.1 Introduction
199(1)
7.2 Polaromonas sp. Strain JS666
200(7)
7.2.1 Isolation
201(1)
7.2.2 Kinetics, Thresholds and Tolerances to cis-DCE and Oxygen
201(1)
7.2.3 Insight About Metabolic Pathways from Genomics and Proteomics
202(2)
7.2.4 Cometabolism of Other Chlorinated Solvents
204(1)
7.2.5 Development of a Molecular Probe for Process Monitoring
205(1)
7.2.6 Development of Strategy for Growth of Inocula
206(1)
7.3 Microcosm Assessment of Site-Suitability
207(1)
7.3.1 Microcosm Preparation
207(1)
7.3.2 Previous Experiences with Microcosm Assessment
208(1)
7.4 Field Demonstration
208(4)
7.4.1 Test Site Selection
208(1)
7.4.2 Preliminary Microcosm Study
209(1)
7.4.3 Titration Studies with SJCA Groundwater
210(1)
7.4.4 Field Test
210(2)
7.5 Summary and Future Prospects
212(7)
References
213(6)
Chapter 8 Bioaugmentation for the In Situ Aerobic Cometabolism of Chlorinated Solvents
219(38)
8.1 Introduction
219(1)
8.2 Aerobic Cometabolic Processes
219(3)
8.3 Aerobic Cometabolism by Indigenous Microorganisms
222(6)
8.3.1 Microcosm Studies with Indigenous Microorganisms
222(1)
8.3.2 Field Studies with Indigenous Microorganisms
222(6)
8.4 Bioaugmentation Approaches
228(21)
8.4.1 Bioaugmentation Approach I
228(9)
8.4.2 Bioaugmentation Approach II
237(5)
8.4.3 Bioaugmentation Approach III
242(6)
8.4.4 Bioaugmentation Approach IV
248(1)
8.5 Summary
249(8)
References
251(6)
Chapter 9 Bioaugmentation with Pseudomonas Stutzeri KC for Carbon Tetrachloride Remediation
257(32)
9.1 Introduction and Rationale
257(1)
9.2 Physiological Function of PDTC Production
258(1)
9.3 CT Transformation by P. Stutzeri KC as a Novel Dechlorination Reaction
259(4)
9.3.1 Pathway of PDTC-Promoted CT Dechlorination
260(1)
9.3.2 Transition Metal Chelation of PDTC
261(2)
9.4 Genetic Requirements for PDTC Production
263(2)
9.5 PDTC-Mediated CT Transformation
265(4)
9.5.1 Trace Metals
266(1)
9.5.2 Cell and CT Concentration
266(2)
9.5.3 Cell Membrane Components
268(1)
9.5.4 An Overall Model for CT Transformation by Pseudomonas stutzeri KC
269(1)
9.6 Bioaugmentation with P. Stutzeri KC: Transport, Growth and Competition
269(4)
9.6.1 Inoculation and Transport
270(1)
9.6.2 Growth and Competition
271(2)
9.7 pH Adjustment
273(2)
9.8 Field Experience: Pilot- and Demonstration-Scale Testing
275(8)
9.8.1 Design and Site Characterization
275(1)
9.8.2 pH of Adjustment, Inoculation and Biocurtain Colonization
275(4)
9.8.3 Long-Term Maintenance of the Biocurtain
279(4)
9.9 Future use of Pseudomonas Stutzeri KC and PDTC
283(6)
References
285(4)
Chapter 10 Bioaugmentation for MTBE Remediation
289(24)
10.1 Introduction
289(1)
10.2 MTBE Use and Occurrence in Groundwater
289(1)
10.3 Scientific Basis for Bioaugmentation of MTBE and TBA
290(6)
10.3.1 MTBE Degrading Bacteria
290(3)
10.3.2 MTBE and TBA Biodegradation in Microcosms
293(1)
10.3.3 Evaluating MTBE and TBA Biodegradation
293(3)
10.4 Bioaugmentation Pilot Testing
296(7)
10.4.1 Bioaugmentation with Direct Degraders (MC-100 and SC-100)
296(6)
10.4.2 Bioaugmentation with Direct Degraders (PM1)
302(1)
10.4.3 Bioaugmentation with Propane Oxidizers (ENV 425)
302(1)
10.5 Full Scale Bioaugmentation
303(2)
10.5.1 MC-100 and SC-100 (Port Hueneme, California, USA)
303(2)
10.5.2 MC-100 (Connecticut, USA)
305(1)
10.5.3 MC-100 (California, USA)
305(1)
10.5.4 Propane Oxidizing Bacteria (Camden, New Jersey, USA)
305(1)
10.6 Lessons Learned
305(2)
10.7 Current Status
307(1)
10.8 Future Prospects for MTBE Bioaugmentation
308(5)
References
308(5)
Chapter 11 Economics and Valuation of Bioaugmentation
313(20)
11.1 Introduction
313(1)
11.2 Primary Cost Drivers
313(5)
11.2.1 Site Specific Testing to Evaluate Bioaugmentation
314(1)
11.2.2 Amount and Distribution of Active Organisms
315(3)
11.3 Costs, Value and Benefits of Bioaugmentation
318(2)
11.3.1 Costs for Bioaugmentation Culture and Injection
318(1)
11.3.2 Value of Bioaugmentation Relative to a "Wait and See" Approach to Degradation of DCE and VC
319(1)
11.4 Economics of Alternative Approaches
320(1)
11.4.1 Costs for Purchase and Injection of Concentrate Versus In Situ Growth and Distribution
320(1)
11.5 Estimated Costs for Template Scenarios
321(9)
11.5.1 Template Site Descriptions
321(2)
11.5.2 Costs Categories and Components
323(1)
11.5.3 EISB Remediation Technology Description
324(2)
11.5.4 EISB Remediation Technology Costs
326(4)
11.6 Summary
330(3)
References
331(2)
Chapter 12 Research Needs for Bioaugmentation
333(30)
12.1 Introduction
333(1)
12.2 Research Needs in Basic Science
333(8)
12.2.1 Molecular Scale
334(1)
12.2.2 Organismal Scale
335(4)
12.2.3 Community Scale
339(1)
12.2.4 Environmental/Ecosystem and Earth Scale
339(2)
12.3 Key Concepts for Bioaugmentation Research
341(8)
12.3.1 The Niche Concept and Its Importance for Bioaugmentation
341(2)
12.3.2 Hydrocarbons and Other Reduced Contaminants
343(2)
12.3.3 The Much-Maligned Microcosm and the Need for Activity-Based Tests
345(1)
12.3.4 The Enrichment Paradox
346(3)
12.4 Applied Research Needs
349(2)
12.4.1 Monitoring Tools
349(1)
12.4.2 Production, Storage and Shipping
350(1)
12.4.3 Delivery and Mixing
350(1)
12.4.4 Electron Donor Choice
350(1)
12.4.5 Regulatory Considerations
351(1)
12.4.6 Modeling of Sites, Dechlorination and Biological Activity
351(1)
12.5 Future Perspectives
351(5)
12.5.1 Biosensors as MBTs
352(1)
12.5.2 Designer Microbes and Synthetic Biology
352(1)
12.5.3 Bioaugmenting with Genes
353(1)
12.5.4 Bioaugmenting with Viruses
354(2)
12.6 Conclusions
356(7)
References
356(7)
Appendix A List of Acronyms, Abbreviations and Symbols 363(4)
Appendix B Unit Conversion Table 367(2)
Appendix C Glossary 369(16)
Index 385