Atjaunināt sīkdatņu piekrišanu

Biofluid Dynamics: Principles and Selected Applications [Hardback]

(North Carolina State University)
  • Formāts: Hardback, 522 pages, height x width: 234x156 mm, weight: 907 g
  • Izdošanas datums: 26-Apr-2006
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 0849322219
  • ISBN-13: 9780849322211
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 210,77 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 522 pages, height x width: 234x156 mm, weight: 907 g
  • Izdošanas datums: 26-Apr-2006
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 0849322219
  • ISBN-13: 9780849322211
Citas grāmatas par šo tēmu:
Requiring only an introductory background in continuum mechanics, including thermodynamics, fluid mechanics, and solid mechanics, Biofluid Dynamics: Principles and Selected Applications contains review, methodology, and application chapters to build a solid understanding of medical implants and devices. For additional assistance, it includes a glossary of biological terms, many figures illustrating theoretical concepts, numerous solved sample problems, and mathematical appendices. The text is geared toward seniors and first-year graduate students in engineering and physics as well as professionals in medicine and medical implant/device industries. It can be used as a primary selection for a comprehensive course or for a two-course sequence.

The book has two main parts: theory, comprising the first two chapters; and applications, constituting the remainder of the book. Specifically, the author reviews the fundamentals of physical and related biological transport phenomena, such as mass, momentum, and heat transfer in biomedical systems, and highlights complementary topics such as two-phase flow, biomechanics, and fluid-structure interaction. Two appendices summarize needed elements of engineering mathematics and CFD software applications, and these are also found in the fifth chapter. The application part, in form of project analyses, focuses on the cardiovascular system with common arterial diseases, organ systems, targeted drug delivery, and stent-graft implants.

Armed with Biofluid Dynamics, students will be ready to solve basic biofluids-related problems, gain new physical insight, and analyze biofluid dynamics aspects of biomedical systems.
PREFACE xiii
GLOSSARY xvii
I ELEMENTS OF CONTINUUM MECHANICS 1(160)
1.1 BIOLOGICAL TRANSPORT PROCESSES
2(11)
1.1.1 Micro-to Macro-scale Systems
2(5)
1.1.2 Solute Transport
7(6)
1.2 BASIC MOMENTUM, HEAT, AND MASS TRANSFER CONCEPTS
13(11)
1.2.1 Continuum Mechanics Axioms
18(1)
1.2.2 Flow Field Descriptions
19(3)
1.2.2.1 Lagrangian Description
20(1)
1.2.2.2 Eulerian Description
21(1)
1.2.3 Derivation Approaches
22(2)
1.3 CONSERVATION LAWS
24(54)
1.3.1 Mass Conservation
26(1)
1.3.2 Momentum Conservation (Integral Approach)
27(15)
1.3.2.1 Stress Tensors and Stress Vectors
30(4)
1.3.2.2 Equation of Motion and its Special Cases
34(2)
1.3.2.3 Force Balance Derivation
36(6)
1.3.3 Energy Conservation
42(7)
1.3.3.1 Heat and Mass Transfer Equations
43(1)
1.3.3.2 Basic Heat and Mass Transfer Applications
44(5)
1.3.4 Turbulent Flow Equations
49(15)
1.3.4.1 Aspects of Turbulence
49(5)
1.3.4.2 Turbulence Scales
54(1)
1.3.4.3 Summary of Turbulence Modeling
55(9)
1.3.5 Solution Techniques
64(14)
1.3.5.1 Solution Methods for Differential Equations
67(1)
1.3.5.2 Solution Procedures for the Navier-Stokes Equations
67(4)
1.3.5.3 Similarity Theory
71(1)
1.3.5.4 Integral Methods
72(4)
1.3.5.5 Dimensional Analysis and Scaling
76(2)
1.4 TWO-PHASE FLOWS
78(42)
1.4.1 Modeling Approaches
79(9)
1.4.1.1 Definitions
81(2)
1.4.1.2 Phase Coupling
83(5)
1.4.2 Mixture Models
88(11)
1.4.2.1 Homogeneous and Non-Newtonian Flow Models
88(10)
1.4.2.2 Drift-Flux Model
98(1)
1.4.3 Separated Flow Models
99(10)
1.4.3.1 Particle Trajectory Models
99(9)
1.4.3.2 Species Mass Transfer
108(1)
1.4.4 Porous Media Flow
109(11)
1.5 BIOMECHANICS REVIEW
120(17)
1.5.1 Introduction
120(1)
1.5.2 Principal Stresses
120(6)
1.5.3 Equilibrium Conditions
126(1)
1.5.4 Deformation Analysis and Stress-Strain Relationships
127(4)
1.5.5 Simplifications
131(6)
1.6 SUMMARY AND OUTLOOK
137(2)
1.7 HOMEWORK ASSIGNMENTS
139(16)
References
155(6)
II BIOFLUID DYNAMICS CONCEPTS 161(80)
2.1 TRANSPORT PHENOMENA
162(35)
2.1.1 Biofluid-compartment Models
163(10)
2.1.2 Tissue Heat and Mass Transfer
173(13)
2.1.3 Joint Lubrication
186(6)
2.1.4 Cell Transport and Microvascular Beds
192(5)
2.2 THE CARDIOVASCULAR SYSTEM
197(35)
2.2.1 Cardiovascular Transport Dynamics
197(2)
2.2.2 The Heart
199(10)
2.2.3 The Blood Vessels
209(23)
2.3 HOMEWORK PROBLEMS
232(5)
References
237(4)
III ANALYSES OF ARTERIAL DISEASES 241(80)
3.1 VESSEL OCCLUSIONS
241(37)
3.1.1 Atherosclerotic Plaque Formation
242(3)
3.1.1.1 A Particle-Hemodynamics Model
244(1)
3.1.1.2 A Pathway Model for Atherogenesis
244(1)
3.1.2 Intimal Hyperplasia Development
245(1)
3.1.3 Thrombogenesis
246(1)
3.1.4 Particle-Hemodynamics
247(18)
3.1.4.1 Equations of Particle Motion
251(3)
3.1.4.2 Near-Wall Forces
254(3)
3.1.4.3 Hemodynamic Wall Parameters
257(8)
3.1.5 Treatment Option: Femoral End-to-Side Graft Bypass
265(13)
3.1.5.1 Computational Fluid-Particle Dynamics Solution
266(5)
3.1.5.2 Model Validation
271(1)
3.1.5.3 Results for a Distal End-to-Side Femoral Bypass
272(4)
3.1.5.4 Novel System Design and Discussion
276(2)
3.2 ANEURYSMS
278(33)
3.2.1 Aortic Aneurysms
279(4)
3.2.1.1 Mechanisms of AAA Development
280(2)
3.2.1.2 AAA-Wall Stress and Rupture
282(1)
3.2.2 Treatment Option: Stent-graft Implants
283(1)
3.2.3 Stented AAA-model Analysis
284(12)
3.2.3.1 Basic Structure Equations
287(1)
3.2.3.2 Numerical Method
287(2)
3.2.3.3 Model Validations
289(1)
3.2.3.4 Results and Discussion
290(5)
3.2.3.5 Conclusions
295(1)
3.3 EXAMPLES OF COMPUTERIZED DISEASE MANAGEMENT
296(26)
3.3.1 Introduction
296(1)
3.3.2 Image File Conversion Steps
297(6)
3.3.3 A Stenosed Artery Model for Surgical Bypass Planning
303(3)
3.3.4 AAA-Rupture Prediction
306(5)
3.4 HOMEWORK PROBLEMS
311(2)
References
313(8)
IV BIOFLUID MECHANICS OF ORGAN SYSTEMS 321(42)
4.1 THE LUNGS
322(17)
4.1.1 Respiratory Tract Geometry
328(2)
4.1.2 Pulmonary Disorders and Treatment Options
330(9)
4.2 THE KIDNEYS
339(10)
4.2.1 Kidney Structure and Functions
340(2)
4.2.2 Fluid Flow and Mass Transfer in an Artificial Kidney Model
342(7)
4.3 THE LIVER
349(9)
4.3.1 Liver Structure and Functions
351(1)
4.3.2 Fluid Flow and Mass Transfer in a Liver Model
351(7)
4.4 HOMEWORK PROBLEMS
358(3)
References
361(2)
V CASE STUDIES IN BIOFLUID DYNAMICS 363(88)
5.1 PREREQUISITES FOR MODELING AND SIMULATING
364(12)
5.1.1 Problem Recognition and System Conceptualization
366(1)
5.1.2 Types of Models and Modeling Approaches
367(4)
5.1.3 Mathematical Representation and System Simulation
371(5)
5.2 NANODRUG DELIVERY IN MICROCHANNELS
376(21)
5.2.1 Flow in Microchannels
377(15)
5.2.1.1 Numerical Solution Techniques
378(5)
5.2.1.2 Microchannel Flow Effects
383(9)
5.2.2 Controlled Nanodrug Delivery in Microchannels
392(5)
5.3 PARTICLE DEPOSITION AND TARGETING IN HUMAN LUNG AIRWAYS
397(25)
5.3.1 Nanoparticle and Microparticle Depositions in a Human Upper Airway Model
399(1)
5.3.2 Modeling Approach and Results
399(20)
5.3.2.1 Numerical Method
404(1)
5.3.2.2 Model Validations
405(2)
5.3.2.3 Results and Discussion
407(11)
5.3.2.4 Conclusions
418(1)
5.3.3 Micro-drug Aerosol Targeting in Lung Airways
419(3)
5.4 FLUID-STRUCTURE INTERACTIONS IN STENTED ANEURYSMS
422(21)
5.4.1 Aneurysms and Their Possible Repairs
422(4)
5.4.2 A Stented Abdominal Aortic Aneurysm Model
426(17)
5.4.2.1 Introduction
426(2)
5.4.2.2 Theory
428(6)
5.4.2.3 Results
434(7)
5.4.2.4 Discussion
441(2)
5.5 PROJECT ASSIGNMENTS
443(2)
References
445(6)
APPENDICES 451(28)
A Review of Tensor Calculus, Differential Operations, Integral Transformations, and ODE Solutions
452(16)
B Single-Phase Field Equations
468(2)
C Suitable CFD Solvers
470(5)
D Physical Properties
475(3)
References
478(1)
INDEX 479


Kleinstreuer, Clement